Dexing Chen , Qiongyi Zhang , Siyu Chen , Yuqing Lin , Yuanming Zhu , Weiwei Sun , Mingjiu Chen , Shuangquan Zou , Xin Qian
{"title":"Variations in soil fungal communities: Comparative insights from coniferous and mixed broadleaf-conifer forests","authors":"Dexing Chen , Qiongyi Zhang , Siyu Chen , Yuqing Lin , Yuanming Zhu , Weiwei Sun , Mingjiu Chen , Shuangquan Zou , Xin Qian","doi":"10.1016/j.pedobi.2024.151007","DOIUrl":null,"url":null,"abstract":"<div><div>Soil fungal communities are intricately linked to their vegetative hosts, playing a crucial role in plant development, biogeochemical cycling, and the stability of forest ecosystems. Distinct forest types harbor unique soil fungal assemblages, each finely tuned to the prevailing environmental conditions and plant species, thereby fulfilling diverse ecological functions. This study used high-throughput sequencing methodologies to conduct an exhaustive assessment of the community structure, ecological process, and interaction networks of soil fungi within coniferous and mixed broadleaf-conifer forests. Our findings demonstrated significant differences in community structure across different functional groups (pathotroph, saprotroph, and symbiotroph) between mixed broadleaf-conifer forests and coniferous forests. The community structure of forest soil fungi was profoundly shaped by soil physicochemical attributes, including pH, organic matter, total phosphorus, and available nitrogen. The neutral community model indicated that stochastic processes were dominant in the structuring of fungal communities in both forest types; however, the proportion of deterministic processes was substantially greater in coniferous forests compared to mixed broadleaf-conifer forests. Furthermore, the soil fungal network structure in mixed broadleaf-conifer forests exhibited greater complexity compared to coniferous forests, with significant associations identified between specific soil physicochemical properties and the topological characteristics of fungal interaction networks in both forest types. These findings underscore the critical impact of forest type on the dynamics of soil fungal communities and their ecological functions, offering strategic insights for forest management practices that enhance ecosystem resilience and biodiversity conservation.</div></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"107 ","pages":"Article 151007"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405624035285","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Soil fungal communities are intricately linked to their vegetative hosts, playing a crucial role in plant development, biogeochemical cycling, and the stability of forest ecosystems. Distinct forest types harbor unique soil fungal assemblages, each finely tuned to the prevailing environmental conditions and plant species, thereby fulfilling diverse ecological functions. This study used high-throughput sequencing methodologies to conduct an exhaustive assessment of the community structure, ecological process, and interaction networks of soil fungi within coniferous and mixed broadleaf-conifer forests. Our findings demonstrated significant differences in community structure across different functional groups (pathotroph, saprotroph, and symbiotroph) between mixed broadleaf-conifer forests and coniferous forests. The community structure of forest soil fungi was profoundly shaped by soil physicochemical attributes, including pH, organic matter, total phosphorus, and available nitrogen. The neutral community model indicated that stochastic processes were dominant in the structuring of fungal communities in both forest types; however, the proportion of deterministic processes was substantially greater in coniferous forests compared to mixed broadleaf-conifer forests. Furthermore, the soil fungal network structure in mixed broadleaf-conifer forests exhibited greater complexity compared to coniferous forests, with significant associations identified between specific soil physicochemical properties and the topological characteristics of fungal interaction networks in both forest types. These findings underscore the critical impact of forest type on the dynamics of soil fungal communities and their ecological functions, offering strategic insights for forest management practices that enhance ecosystem resilience and biodiversity conservation.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.