Will the 2022 compound heatwave–drought extreme over the Yangtze River Basin become Grey Rhino in the future?

IF 6.4 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Advances in Climate Change Research Pub Date : 2024-06-01 DOI:10.1016/j.accre.2024.05.004
Ai-Qing Feng , Qing-Chen Chao , Lu-Lu Liu , Ge Gao , Guo-Fu Wang , Xue-Jun Zhang , Qi-Guang Wang
{"title":"Will the 2022 compound heatwave–drought extreme over the Yangtze River Basin become Grey Rhino in the future?","authors":"Ai-Qing Feng ,&nbsp;Qing-Chen Chao ,&nbsp;Lu-Lu Liu ,&nbsp;Ge Gao ,&nbsp;Guo-Fu Wang ,&nbsp;Xue-Jun Zhang ,&nbsp;Qi-Guang Wang","doi":"10.1016/j.accre.2024.05.004","DOIUrl":null,"url":null,"abstract":"<div><p>The increasingly frequent and severe regional-scale compound heatwave‒drought extreme events (CHDEs), driven by global warming, present formidable challenges to ecosystems, residential livelihoods, and economic conditions. However, uncertainty persists regarding the future trend of CHDEs and their insights into regional spatiotemporal heterogeneity. By integrating daily meteorological data from observations in 1961–2022 and global climate models (GCMs) based on the Shared Socioeconomic Pathways, the evolution patterns of CHDEs were compared and examined among three sub-catchments of the Yangtze River Basin, and the return periods of CHDE in 2050s and 2100s were projected. The findings indicate that the climate during the 2022 CHDE period was the warmest and driest recorded in 1961–2022, with precipitation less than 154.5 mm and a mean daily maximum temperature 3.4 °C higher than the average of 1981–2010, whereas the characteristics in the sub-catchments exhibited temporal and spatial variation. In July–August 2022, the most notable feature of CHDE was its extremeness since 1961, with return periods of ∼200-year in upstream, 80-year in midstream, and 40-year in downstream, respectively. By 2050, the return periods witnessed 2022 CHDE would likely be reduced by one-third. Looking towards 2100, under the highest emission scenario of SSP585, it was projected to substantially increase the frequency of CHDEs, with return periods reduced to one-third in the upstream and downstream, as well as halved in the midstream. These findings provide valuable insights into the changing risks associated with forthcoming climate extremes, emphasizing the urgency of addressing these challenges in regional management and sustainable development.</p></div>","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"15 3","pages":"Pages 547-556"},"PeriodicalIF":6.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927824000753/pdfft?md5=812fceb47bdf05ef40c8ad3317f74362&pid=1-s2.0-S1674927824000753-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927824000753","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The increasingly frequent and severe regional-scale compound heatwave‒drought extreme events (CHDEs), driven by global warming, present formidable challenges to ecosystems, residential livelihoods, and economic conditions. However, uncertainty persists regarding the future trend of CHDEs and their insights into regional spatiotemporal heterogeneity. By integrating daily meteorological data from observations in 1961–2022 and global climate models (GCMs) based on the Shared Socioeconomic Pathways, the evolution patterns of CHDEs were compared and examined among three sub-catchments of the Yangtze River Basin, and the return periods of CHDE in 2050s and 2100s were projected. The findings indicate that the climate during the 2022 CHDE period was the warmest and driest recorded in 1961–2022, with precipitation less than 154.5 mm and a mean daily maximum temperature 3.4 °C higher than the average of 1981–2010, whereas the characteristics in the sub-catchments exhibited temporal and spatial variation. In July–August 2022, the most notable feature of CHDE was its extremeness since 1961, with return periods of ∼200-year in upstream, 80-year in midstream, and 40-year in downstream, respectively. By 2050, the return periods witnessed 2022 CHDE would likely be reduced by one-third. Looking towards 2100, under the highest emission scenario of SSP585, it was projected to substantially increase the frequency of CHDEs, with return periods reduced to one-third in the upstream and downstream, as well as halved in the midstream. These findings provide valuable insights into the changing risks associated with forthcoming climate extremes, emphasizing the urgency of addressing these challenges in regional management and sustainable development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2022 年长江流域热浪-干旱复合极端天气未来会变成灰犀牛吗?
在全球变暖的驱动下,区域尺度的复合热浪-干旱极端事件(CHDEs)日益频繁和严重,给生态系统、居民生活和经济状况带来了严峻的挑战。然而,CHDE 的未来趋势及其对区域时空异质性的影响仍存在不确定性。通过整合 1961-2022 年的日观测气象数据和基于共享社会经济路径的全球气候模式(GCMs),比较和研究了长江流域三个子流域 CHDEs 的演变模式,并预测了 2050 年代和 2100 年代的 CHDEs 重现期。结果表明,2022 年 CHDE 期间的气候是 1961-2022 年有记录以来最温暖、最干旱的,降水量小于 154.5 mm,日平均最高气温比 1981-2010 年平均值高 3.4 ℃,而各子流域的特征则表现出时空差异。2022 年 7-8 月,CHDE 最显著的特征是 1961 年以来的极端性,上游重现期为 200 年一遇,中游重现期为 80 年一遇,下游重现期为 40 年一遇。到 2050 年,2022 年 CHDE 的重现期可能会减少三分之一。展望 2100 年,在 SSP585 的最高排放情景下,预计 CHDEs 的发生频率将大幅增加,上游和下游的重现期将减少三分之一,中游的重现期将减半。这些发现为了解与即将到来的极端气候相关的不断变化的风险提供了宝贵的见解,强调了在区域管理和可持续发展中应对这些挑战的紧迫性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Climate Change Research
Advances in Climate Change Research Earth and Planetary Sciences-Atmospheric Science
CiteScore
9.80
自引率
4.10%
发文量
424
审稿时长
107 days
期刊介绍: Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change. Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.
期刊最新文献
Editorial Board A multi-objective optimization approach for harnessing rainwater in changing climate Land–atmosphere feedbacks weaken the risks of precipitation extremes over Australia in a warming climate National water use of coal-fired power generation: Hybrid life cycle assessment in China Relative contribution of dynamic and thermodynamic components on Southeast Asia future precipitation changes from different multi-GCM ensemble members
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1