Investigating the influence of spatial characteristics on cycling volume: A multi-scale geographic weighted regression approach

Seçkin Çiriş , Mert Akay , Ece Tümer
{"title":"Investigating the influence of spatial characteristics on cycling volume: A multi-scale geographic weighted regression approach","authors":"Seçkin Çiriş ,&nbsp;Mert Akay ,&nbsp;Ece Tümer","doi":"10.1016/j.trip.2024.101160","DOIUrl":null,"url":null,"abstract":"<div><p>Cycling has seen a remarkable rise, signifying a paradigmatic move towards sustainable, eco-friendly, and efficient commuting alternatives in the contemporary urban setting. Cities also encourage this trend by establishing cycle lanes, bike-sharing programs, and incentives for frequent riders. To enhance these motivations from an urbanistic perspective, it is essential to comprehend the influence of urban characteristics on cycling volume and to incorporate this understanding into data-driven decision-making processes.</p><p>This research examines the Bicification project data from Istanbul with a spatial perspective. Utilising a comprehensive array of spatial big data, the study explores the impact of urban land use, transport services, land morphology, and sociodemographic factors on cycling volume through a Multi-scale Geographically Weighted Regression (MGWR). With an Adj R<sup>2</sup> value of 0.68, the model demonstrates a strong relation between cycling volume and several factors, including biking park stations, park and ride points, pier stops, rail stops, transfer points, main roads, elevation, population, industrial facilities, health facilities, sports areas, and residential areas. The findings will serve to develop a data-driven strategic approach to promote cycling in Istanbul.</p></div>","PeriodicalId":36621,"journal":{"name":"Transportation Research Interdisciplinary Perspectives","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590198224001465/pdfft?md5=128048ca9f92a22feb534dd9b79f650e&pid=1-s2.0-S2590198224001465-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Interdisciplinary Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590198224001465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Cycling has seen a remarkable rise, signifying a paradigmatic move towards sustainable, eco-friendly, and efficient commuting alternatives in the contemporary urban setting. Cities also encourage this trend by establishing cycle lanes, bike-sharing programs, and incentives for frequent riders. To enhance these motivations from an urbanistic perspective, it is essential to comprehend the influence of urban characteristics on cycling volume and to incorporate this understanding into data-driven decision-making processes.

This research examines the Bicification project data from Istanbul with a spatial perspective. Utilising a comprehensive array of spatial big data, the study explores the impact of urban land use, transport services, land morphology, and sociodemographic factors on cycling volume through a Multi-scale Geographically Weighted Regression (MGWR). With an Adj R2 value of 0.68, the model demonstrates a strong relation between cycling volume and several factors, including biking park stations, park and ride points, pier stops, rail stops, transfer points, main roads, elevation, population, industrial facilities, health facilities, sports areas, and residential areas. The findings will serve to develop a data-driven strategic approach to promote cycling in Istanbul.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调查空间特征对自行车骑行量的影响:多尺度地理加权回归法
在当代城市环境中,骑自行车出行已成为一种可持续、环保和高效的通勤方式。城市也通过设立自行车道、共享单车项目以及对经常骑车者的奖励措施来鼓励这一趋势。为了从城市学的角度增强这些动机,必须理解城市特征对自行车骑行量的影响,并将这种理解纳入数据驱动的决策过程。本研究利用一系列全面的空间大数据,通过多尺度地理加权回归(MGWR),探讨了城市土地利用、交通服务、土地形态和社会人口因素对自行车骑行量的影响。该模型的 Adj R2 值为 0.68,表明自行车骑行量与多个因素(包括自行车公园站点、停车点和乘车点、码头站点、铁路站点、换乘点、主干道、海拔高度、人口、工业设施、卫生设施、运动区和住宅区)之间存在密切关系。研究结果将有助于制定以数据为导向的战略方法,在伊斯坦布尔推广自行车运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Transportation Research Interdisciplinary Perspectives
Transportation Research Interdisciplinary Perspectives Engineering-Automotive Engineering
CiteScore
12.90
自引率
0.00%
发文量
185
审稿时长
22 weeks
期刊最新文献
Electric mobility investment in the power and transport sector coupling context: Lessons from Argentina, the Philippines, Poland and Romania Comparative Analysis of barriers to Battery electric vehicle adoption between BEV and ICE Users: A case study of Thailand Disparities in ridehailing travel times for accessing non-work destinations Optimal bus reassignment considering in-vehicle overcrowding Drones for automated parcel delivery: Use case identification and derivation of technical requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1