Flow periodicity in microchannels with fin arrays: Experimental validation

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Experimental Thermal and Fluid Science Pub Date : 2024-07-03 DOI:10.1016/j.expthermflusci.2024.111261
Pinar Eneren, Arthur Vangeffelen, Yunus Tansu Aksoy, Maria Rosaria Vetrano
{"title":"Flow periodicity in microchannels with fin arrays: Experimental validation","authors":"Pinar Eneren,&nbsp;Arthur Vangeffelen,&nbsp;Yunus Tansu Aksoy,&nbsp;Maria Rosaria Vetrano","doi":"10.1016/j.expthermflusci.2024.111261","DOIUrl":null,"url":null,"abstract":"<div><p>Investigation of the hydrodynamics within microfluidic chips is crucial for cutting-edge integrated liquid cooling systems due to the coupling between the temperature and velocity fields. Therefore, in this experimental work, we examine the spatial periodicity of the laminar velocity fields and pressure drops inside offset strip fin (OSF) and square pin fin (SPF) arrays at Reynolds numbers between 50 and 292 under isothermal conditions. The velocity fields are characterized using the <span><math><mi>μ</mi></math></span>PIV technique, and an advanced image stitching algorithm is applied to obtain the streamwise velocity fields. These stitched velocity fields serve two key purposes: evaluation of the flow development length and validation of the flow periodicity due to the periodic nature of the fin arrays. The velocity measurements are compared to the DNS results, and the friction factors acquired from pressure drop measurements are accurately predicted by the correlations based on the periodic flow assumption owing to the rapid flow development. For the first time, to the authors’ knowledge, the consistent monotonic decay of flow perturbations is experimentally evidenced to occur via a single exponential mode. Finally, based on our validation, we confirm the feasibility of using the unit-cell approach to significantly reduce the computational costs compared to simulations that resolve the entire geometry.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"158 ","pages":"Article 111261"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001304","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Investigation of the hydrodynamics within microfluidic chips is crucial for cutting-edge integrated liquid cooling systems due to the coupling between the temperature and velocity fields. Therefore, in this experimental work, we examine the spatial periodicity of the laminar velocity fields and pressure drops inside offset strip fin (OSF) and square pin fin (SPF) arrays at Reynolds numbers between 50 and 292 under isothermal conditions. The velocity fields are characterized using the μPIV technique, and an advanced image stitching algorithm is applied to obtain the streamwise velocity fields. These stitched velocity fields serve two key purposes: evaluation of the flow development length and validation of the flow periodicity due to the periodic nature of the fin arrays. The velocity measurements are compared to the DNS results, and the friction factors acquired from pressure drop measurements are accurately predicted by the correlations based on the periodic flow assumption owing to the rapid flow development. For the first time, to the authors’ knowledge, the consistent monotonic decay of flow perturbations is experimentally evidenced to occur via a single exponential mode. Finally, based on our validation, we confirm the feasibility of using the unit-cell approach to significantly reduce the computational costs compared to simulations that resolve the entire geometry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带鳍阵列微通道中的流动周期性:实验验证
由于温度场和速度场之间的耦合关系,研究微流控芯片内的流体力学对于尖端集成液体冷却系统至关重要。因此,在本实验中,我们研究了在等温条件下,雷诺数介于 50 和 292 之间时,偏置条形鳍片(OSF)和方形针形鳍片(SPF)阵列内层流速度场和压降的空间周期性。采用 μPIV 技术对速度场进行表征,并应用先进的图像拼接算法获得流向速度场。这些拼接的速度场有两个主要用途:评估流动发展长度和验证鳍片阵列的周期性所导致的流动周期性。速度测量结果与 DNS 结果进行了比较,由于流动发展迅速,基于周期性流动假设的相关性可以准确预测通过压力降测量获得的摩擦系数。据作者所知,这是第一次通过实验证明流动扰动的单调衰减是通过单一指数模式发生的。最后,基于我们的验证,我们证实了使用单元单元方法的可行性,与解析整个几何形状的模拟相比,单元单元方法可显著降低计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
期刊最新文献
Pool boiling on the aluminum alloy, copper and WC-coated copper with micro-finned textures and developed multimodal roughness formed by nanosecond laser radiation A three-axis regime diagram for quantitative analyses of the mixing field structure in laminar and turbulent combustion Genetically-based active flow control of a circular cylinder wake via synthetic jets Experimental assessment of multi-phase flow distribution in an evaporator header through Design of Experiments techniques Improvement of a wire-mesh sensor based on the bubble-wire collision kinematics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1