A three-axis regime diagram for quantitative analyses of the mixing field structure in laminar and turbulent combustion

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL Experimental Thermal and Fluid Science Pub Date : 2024-11-26 DOI:10.1016/j.expthermflusci.2024.111367
Mohy S. Mansour , Mohamed K. Hasanin , Mahmoud M.A. Ahmed
{"title":"A three-axis regime diagram for quantitative analyses of the mixing field structure in laminar and turbulent combustion","authors":"Mohy S. Mansour ,&nbsp;Mohamed K. Hasanin ,&nbsp;Mahmoud M.A. Ahmed","doi":"10.1016/j.expthermflusci.2024.111367","DOIUrl":null,"url":null,"abstract":"<div><div>The combustion characteristics and stability are affected primarily by the mixing field structure. The goal of many practical systems is to achieve higher stability by creating Inhomogeneous, Partially Premixed, and Stratified (IPPS) environments. A three-axis regime diagram is proposed in this work to describe the mixing field structure of the IPPS, the non-premixed, and the premixed environments. The proposed axes of the diagram are the mean, the fluctuations, and the 2-D gradients of the conserved scalar mixture fraction.</div><div>Highly resolved two-dimensional measurements of the mixture fraction in highly stabilized burners with well-controlled mixture inhomogeneity using advanced Rayleigh scattering measurements are used in this study to investigate the abilities of the proposed diagram. The effects of the mixing level, equivalence ratio, and Reynolds number on the mixing field structure were investigated using this diagram adequately. The three-axis diagram provided quantitative detailed information on the mixing field structure at different operating conditions. In addition, the local mixing layer thickness data are extracted from the diagram based on the mixture fraction profiles and the corresponding mixture fraction gradients profiles in the mixture fraction space.</div><div>The level of mixture inhomogeneity and equivalence ratio significantly affect the mixing field structure, while the effect of the Reynolds number in turbulent conditions is weak. The correlations between the local mixing layer thickness and the main operating parameters are observed using its PDFs. Reducing the level of mixture inhomogeneity reduces the maximum mixture fraction gradients at zero fluctuations of the mean mixture fraction. The correlations are clear for further analytical investigation. This study shows that the proposed three-axis diagram is a useful tool to investigate and analyze the mixing field structure of the IPPS regimes.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"162 ","pages":"Article 111367"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089417772400236X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The combustion characteristics and stability are affected primarily by the mixing field structure. The goal of many practical systems is to achieve higher stability by creating Inhomogeneous, Partially Premixed, and Stratified (IPPS) environments. A three-axis regime diagram is proposed in this work to describe the mixing field structure of the IPPS, the non-premixed, and the premixed environments. The proposed axes of the diagram are the mean, the fluctuations, and the 2-D gradients of the conserved scalar mixture fraction.
Highly resolved two-dimensional measurements of the mixture fraction in highly stabilized burners with well-controlled mixture inhomogeneity using advanced Rayleigh scattering measurements are used in this study to investigate the abilities of the proposed diagram. The effects of the mixing level, equivalence ratio, and Reynolds number on the mixing field structure were investigated using this diagram adequately. The three-axis diagram provided quantitative detailed information on the mixing field structure at different operating conditions. In addition, the local mixing layer thickness data are extracted from the diagram based on the mixture fraction profiles and the corresponding mixture fraction gradients profiles in the mixture fraction space.
The level of mixture inhomogeneity and equivalence ratio significantly affect the mixing field structure, while the effect of the Reynolds number in turbulent conditions is weak. The correlations between the local mixing layer thickness and the main operating parameters are observed using its PDFs. Reducing the level of mixture inhomogeneity reduces the maximum mixture fraction gradients at zero fluctuations of the mean mixture fraction. The correlations are clear for further analytical investigation. This study shows that the proposed three-axis diagram is a useful tool to investigate and analyze the mixing field structure of the IPPS regimes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
期刊最新文献
Pool boiling on the aluminum alloy, copper and WC-coated copper with micro-finned textures and developed multimodal roughness formed by nanosecond laser radiation A three-axis regime diagram for quantitative analyses of the mixing field structure in laminar and turbulent combustion Genetically-based active flow control of a circular cylinder wake via synthetic jets Experimental assessment of multi-phase flow distribution in an evaporator header through Design of Experiments techniques Improvement of a wire-mesh sensor based on the bubble-wire collision kinematics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1