Jie AN , Kaile CHU , Qin ZHOU , Huizhu MA , Qianwen HE , YaQiong ZHANG , Junping LV , Hua WEI , Min LI , Zhifang WU , Sijin LI
{"title":"Radiosensitizer-based injectable hydrogel for enhanced radio-chemotherapy of TNBC","authors":"Jie AN , Kaile CHU , Qin ZHOU , Huizhu MA , Qianwen HE , YaQiong ZHANG , Junping LV , Hua WEI , Min LI , Zhifang WU , Sijin LI","doi":"10.1016/j.cjac.2024.100414","DOIUrl":null,"url":null,"abstract":"<div><p>Radionuclide therapy (RNT) stands out as a highly effective method for treating solid tumors. However, its therapeutic efficiency faces challenges due to the radioresistance of tumors, the limited penetration depth and intracellular deposition of rays in tumor tissue, which causes residue of living cancer cells. Herein, we report a novel approach by utilizing radionuclide <sup>131</sup>I-labelled polydopamine encapsulated gold nanoparticle co-loaded with the classical anticancer drug gemcitabine within a hydrogel formed from oxidized glucan and chitosan hydrochloride, combining RNT with chemotherapy for cancer treatment. Au, as a high Z element, is able to interact with short-range β-rays to emit bremsstrahlung and secondary charged particles which in turn increase the dose deposited in tumor cells. Simultaneously, gemcitabine is able to affect cell cycle redistribution, resulting in an increase in the radiosensitive cellular component of the cycle, and gemcitabine also inhibits the repair of radioactive damage to cellular DNA, which has a radiosensitizing effect. In both <em>in vivo</em> and <em>vitro</em> experiments, the injectable hydrogel demonstrates excellent biosecurity, stability in radionuclide labeling, and capabilities for single-photon emission computed tomography (SPECT) imaging. Compared analysis with single RNT revealed that combination therapy markedly inhibits the growth of triple-negative breast cancer. This integrated therapeutic strategy establishes an efficient tumor synergistic treatment platform, offering new avenues for advancing radionuclide therapy in the clinical treatment of cancer.</p></div>","PeriodicalId":277,"journal":{"name":"Chinese Journal of Analytical Chemistry","volume":"52 7","pages":"Article 100414"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1872204024000598/pdfft?md5=efa5603318eb02718afa29f9a82e2704&pid=1-s2.0-S1872204024000598-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872204024000598","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Radionuclide therapy (RNT) stands out as a highly effective method for treating solid tumors. However, its therapeutic efficiency faces challenges due to the radioresistance of tumors, the limited penetration depth and intracellular deposition of rays in tumor tissue, which causes residue of living cancer cells. Herein, we report a novel approach by utilizing radionuclide 131I-labelled polydopamine encapsulated gold nanoparticle co-loaded with the classical anticancer drug gemcitabine within a hydrogel formed from oxidized glucan and chitosan hydrochloride, combining RNT with chemotherapy for cancer treatment. Au, as a high Z element, is able to interact with short-range β-rays to emit bremsstrahlung and secondary charged particles which in turn increase the dose deposited in tumor cells. Simultaneously, gemcitabine is able to affect cell cycle redistribution, resulting in an increase in the radiosensitive cellular component of the cycle, and gemcitabine also inhibits the repair of radioactive damage to cellular DNA, which has a radiosensitizing effect. In both in vivo and vitro experiments, the injectable hydrogel demonstrates excellent biosecurity, stability in radionuclide labeling, and capabilities for single-photon emission computed tomography (SPECT) imaging. Compared analysis with single RNT revealed that combination therapy markedly inhibits the growth of triple-negative breast cancer. This integrated therapeutic strategy establishes an efficient tumor synergistic treatment platform, offering new avenues for advancing radionuclide therapy in the clinical treatment of cancer.
期刊介绍:
Chinese Journal of Analytical Chemistry(CJAC) is an academic journal of analytical chemistry established in 1972 and sponsored by the Chinese Chemical Society and Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. Its objectives are to report the original scientific research achievements and review the recent development of analytical chemistry in all areas. The journal sets up 5 columns including Research Papers, Research Notes, Experimental Technique and Instrument, Review and Progress and Summary Accounts. The journal published monthly in Chinese language. A detailed abstract, keywords and the titles of figures and tables are provided in English, except column of Summary Accounts. Prof. Wang Erkang, an outstanding analytical chemist, academician of Chinese Academy of Sciences & Third World Academy of Sciences, holds the post of the Editor-in-chief.