Phase equilibria and crystallographic structure of clathrate hydrate formed with carbon dioxide and cyclohexanone

IF 2.8 3区 工程技术 Q3 CHEMISTRY, PHYSICAL Fluid Phase Equilibria Pub Date : 2024-07-05 DOI:10.1016/j.fluid.2024.114175
Leo Kamiya , Ryonosuke Kasai , Satoshi Takeya , Ryo Ohmura
{"title":"Phase equilibria and crystallographic structure of clathrate hydrate formed with carbon dioxide and cyclohexanone","authors":"Leo Kamiya ,&nbsp;Ryonosuke Kasai ,&nbsp;Satoshi Takeya ,&nbsp;Ryo Ohmura","doi":"10.1016/j.fluid.2024.114175","DOIUrl":null,"url":null,"abstract":"<div><p>This paper reports the phase equilibrium and crystallographic data of the hydrate formed in the CO<sub>2</sub> + cyclohexanone + water system. We measured the phase equilibrium condition and conducted the powder X-ray diffraction measurements. The formation of the structure II hydrate in the system of CO<sub>2</sub> + cyclohexanone + water was observed at the temperature from 270.0 K to 275.6 K, under the pressure from 0.62 MPa to 1.70 MPa.</p><p>At 270.0 K – 275.6 K and 0.62 MPa – 1.70 MPa, the structure II hydrate formed, and the phase equilibrium condition alleviated in the system of CO<sub>2</sub> + cyclohexanone + water, while the hydrate formed at 276.5 K - 280.7 K and 2.02 MPa – 3.33 MPa, displayed structure I and cyclohexanone acted as an inhibitor. Equilibrium conditions were measured using the isochoric method, revealing different <em>p-T</em> slopes at high and low temperatures. The high-temperature slope closely resembled that of structure I CO<sub>2</sub> hydrate reported previously. We continuously monitored temperature and pressure during the structural phase transition, resulting in a slope change. To directly determine the hydrate structure, PXRD measurements were conducted on two samples: one from the high-temperature side and the other from the low-temperature side. The sample from the high-temperature side exhibited structure I with a lattice constant of 11.8749 (9) <strong>Å</strong> at 153 K, while the low-temperature sample displayed structure II with a lattice constant of 17.443(1) Å at 153 K.</p></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"585 ","pages":"Article 114175"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378381224001511/pdfft?md5=cd3f6e0c37faa01d9777676ef3142d64&pid=1-s2.0-S0378381224001511-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224001511","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports the phase equilibrium and crystallographic data of the hydrate formed in the CO2 + cyclohexanone + water system. We measured the phase equilibrium condition and conducted the powder X-ray diffraction measurements. The formation of the structure II hydrate in the system of CO2 + cyclohexanone + water was observed at the temperature from 270.0 K to 275.6 K, under the pressure from 0.62 MPa to 1.70 MPa.

At 270.0 K – 275.6 K and 0.62 MPa – 1.70 MPa, the structure II hydrate formed, and the phase equilibrium condition alleviated in the system of CO2 + cyclohexanone + water, while the hydrate formed at 276.5 K - 280.7 K and 2.02 MPa – 3.33 MPa, displayed structure I and cyclohexanone acted as an inhibitor. Equilibrium conditions were measured using the isochoric method, revealing different p-T slopes at high and low temperatures. The high-temperature slope closely resembled that of structure I CO2 hydrate reported previously. We continuously monitored temperature and pressure during the structural phase transition, resulting in a slope change. To directly determine the hydrate structure, PXRD measurements were conducted on two samples: one from the high-temperature side and the other from the low-temperature side. The sample from the high-temperature side exhibited structure I with a lattice constant of 11.8749 (9) Å at 153 K, while the low-temperature sample displayed structure II with a lattice constant of 17.443(1) Å at 153 K.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳与环己酮形成的水合物的相平衡和晶体结构
本文报告了 CO2 + 环己酮 + 水体系中形成的水合物的相平衡和晶体学数据。我们测量了相平衡条件,并进行了粉末 X 射线衍射测量。在 270.0 K - 275.6 K 和 0.62 MPa - 1.70 MPa 压力下,观察到 CO2 + 环己酮 + 水体系中结构 II 水合物的形成。在 270.0 K - 275.6 K 和 0.62 MPa - 1.70 MPa 条件下,形成结构 II 水合物,CO2 + 环己酮 + 水体系中的相平衡条件得到缓解;而在 276.5 K - 280.7 K 和 2.02 MPa - 3.33 MPa 条件下,形成的水合物显示结构 I,环己酮起抑制作用。使用等时法测量了平衡条件,发现在高温和低温下存在不同的 p-T 斜率。高温斜率与之前报告的结构 I CO2 水合物的斜率非常相似。我们在结构相变过程中持续监测温度和压力,结果发现斜率发生了变化。为了直接确定水合物结构,我们对两个样品进行了 PXRD 测量:一个来自高温侧,另一个来自低温侧。高温侧的样品在 153 K 时显示出晶格常数为 11.8749 (9) Å 的结构 I,而低温侧的样品在 153 K 时显示出晶格常数为 17.443 (1) Å 的结构 II。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fluid Phase Equilibria
Fluid Phase Equilibria 工程技术-工程:化工
CiteScore
5.30
自引率
15.40%
发文量
223
审稿时长
53 days
期刊介绍: Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results. Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.
期刊最新文献
Prediction of melting and solid phase transitions temperatures and enthalpies for triacylglycerols using artificial neural networks The influence of pure compounds’ parameters on the phase behaviour of carbon dioxide + 1-hexanol binary system Experimental data and thermodynamic modeling for n-propane + Brazil nut oil at high pressures Development of a new parameterization strategy and GC parameters of halogenated hydrocarbons for PC-SAFT equation of state Phase equilibrium calculations with specified vapor fraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1