Demonstration of THz waves propagation within a hollow-core THz waveguide based on an out-of-plane photonic bandgap crystal cladding

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Photonics and Nanostructures-Fundamentals and Applications Pub Date : 2024-07-02 DOI:10.1016/j.photonics.2024.101293
Georges Humbert
{"title":"Demonstration of THz waves propagation within a hollow-core THz waveguide based on an out-of-plane photonic bandgap crystal cladding","authors":"Georges Humbert","doi":"10.1016/j.photonics.2024.101293","DOIUrl":null,"url":null,"abstract":"<div><p>The development of terahertz (THz) waveguides is limited by the high-conductivity losses of metals, the surface roughness, and the high-absorption of the dielectric materials. Consequently, dry air is certainly the most favorable medium to propagate THz radiations. A novel hollow-core THz waveguide enabling efficient THz wave propagation over 72 cm long length, is presented in this study. THz waves guiding in a hollow-core is achieved by an out-of-plane Photonic Band Gap (PBG) crystal cladding with a design inspired from the technology of hollow core PBG-crystal fibers. These fibers developed in the optical domains have demonstrated exceptional performances such as single mode propagation of light with low attenuation on kilometer length scales. The properties of the PBG guiding mechanism to forbid THz waves extension in the crystal cladding is exploited for enabling low-loss propagation in a waveguide fabricated with a highly absorptive material (ex. silica). PBG guidance into this new class of hollow-core THz waveguide were demonstrated theoretically and experimentally.</p></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1569441024000683/pdfft?md5=b0272fae620ebfed818b9cde2cb77267&pid=1-s2.0-S1569441024000683-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000683","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of terahertz (THz) waveguides is limited by the high-conductivity losses of metals, the surface roughness, and the high-absorption of the dielectric materials. Consequently, dry air is certainly the most favorable medium to propagate THz radiations. A novel hollow-core THz waveguide enabling efficient THz wave propagation over 72 cm long length, is presented in this study. THz waves guiding in a hollow-core is achieved by an out-of-plane Photonic Band Gap (PBG) crystal cladding with a design inspired from the technology of hollow core PBG-crystal fibers. These fibers developed in the optical domains have demonstrated exceptional performances such as single mode propagation of light with low attenuation on kilometer length scales. The properties of the PBG guiding mechanism to forbid THz waves extension in the crystal cladding is exploited for enabling low-loss propagation in a waveguide fabricated with a highly absorptive material (ex. silica). PBG guidance into this new class of hollow-core THz waveguide were demonstrated theoretically and experimentally.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于平面外光子带隙晶体包层的空芯太赫兹波导内的太赫兹波传播演示
太赫兹(THz)波导的发展受限于金属的高传导损耗、表面粗糙度和介电材料的高吸收率。因此,干燥空气无疑是传播太赫兹辐射的最有利介质。本研究介绍了一种新型空心太赫兹波导,可在 72 厘米长的长度上高效传播太赫兹波。空芯太赫兹波导是通过平面外光子带隙(PBG)晶体包层实现的,其设计灵感来自空芯 PBG 晶体光纤技术。这些在光学领域开发的光纤已显示出卓越的性能,如在千米长度范围内以低衰减实现光的单模传播。利用 PBG 导向机制禁止太赫兹波在晶体包层中延伸的特性,可以在使用高吸收材料(如二氧化硅)制造的波导中实现低损耗传播。理论和实验都证明了 PBG 对这种新型空芯太赫兹波导的引导作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
期刊最新文献
Editorial Board Preface to the special issue in micro and nano structured mid-IR to terahertz materials and devices Corrigendum to “High sensitivity plasmonic refractive index sensor for early anaemia detection” [Photonics Nanostruct. - Fundam. Appl. 58(01) (2024) 101235] SPR humidity dynamic monitoring method via PVA sensing membrane thickness variation and image processing techniques Application of Cr2Si2Te6 saturable absorber in Er-doped fiber laser for generating dual-wavelength mode-locked pulse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1