Zou Lai , Chen Yang , Shulin Lan , Lihui Wang , Weiming Shen , Liehuang Zhu
{"title":"BearingFM: Towards a foundation model for bearing fault diagnosis by domain knowledge and contrastive learning","authors":"Zou Lai , Chen Yang , Shulin Lan , Lihui Wang , Weiming Shen , Liehuang Zhu","doi":"10.1016/j.ijpe.2024.109319","DOIUrl":null,"url":null,"abstract":"<div><p>Monitoring bearing failures in production equipment can effectively prevent finished product quality issues and unplanned factory downtime, thereby reducing supply chain uncertainties and risk. Therefore, monitoring bearing failures in production equipment is important for improving supply chain sustainability. Due to the generalization limitations of neural network models, specific models must be trained for specific tasks. However, in real industrial scenarios, there is a severe lack of labeled samples, making it difficult to deploy fault diagnosis models across massive amounts of equipment in workshops. In order to solve the above issue, this paper proposes a cloud-edge-end collaborative semi-supervised learning framework, which provides multi-level computing power and data support for building a foundation model. A data augmentation method based on the bearing fault mechanism is proposed, which effectively preserves the inherent essential characteristics in vibration signals by normalizing frequency and adding noise in specific frequency bands. A novel contrastive learning model is designed, which narrows the distances between positive samples and widens the distances between negative samples in the high-dimensional space through cross comparisons in the time dimension and knowledge dimension, thereby extracting the most essential characteristics from the unlabeled signals. Multiple sets of experiments conducted on four datasets demonstrate that the proposed approach achieves an approximately 98% fault classification accuracy with only 1.2% labeled samples.</p></div>","PeriodicalId":14287,"journal":{"name":"International Journal of Production Economics","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Economics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925527324001762","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monitoring bearing failures in production equipment can effectively prevent finished product quality issues and unplanned factory downtime, thereby reducing supply chain uncertainties and risk. Therefore, monitoring bearing failures in production equipment is important for improving supply chain sustainability. Due to the generalization limitations of neural network models, specific models must be trained for specific tasks. However, in real industrial scenarios, there is a severe lack of labeled samples, making it difficult to deploy fault diagnosis models across massive amounts of equipment in workshops. In order to solve the above issue, this paper proposes a cloud-edge-end collaborative semi-supervised learning framework, which provides multi-level computing power and data support for building a foundation model. A data augmentation method based on the bearing fault mechanism is proposed, which effectively preserves the inherent essential characteristics in vibration signals by normalizing frequency and adding noise in specific frequency bands. A novel contrastive learning model is designed, which narrows the distances between positive samples and widens the distances between negative samples in the high-dimensional space through cross comparisons in the time dimension and knowledge dimension, thereby extracting the most essential characteristics from the unlabeled signals. Multiple sets of experiments conducted on four datasets demonstrate that the proposed approach achieves an approximately 98% fault classification accuracy with only 1.2% labeled samples.
期刊介绍:
The International Journal of Production Economics focuses on the interface between engineering and management. It covers all aspects of manufacturing and process industries, as well as production in general. The journal is interdisciplinary, considering activities throughout the product life cycle and material flow cycle. It aims to disseminate knowledge for improving industrial practice and strengthening the theoretical base for decision making. The journal serves as a forum for exchanging ideas and presenting new developments in theory and application, combining academic standards with practical value for industrial applications.