Permafrost and Active Layer Temperature and Freeze/Thaw Timing Reflect Climatic Trends at Bayelva, Svalbard

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Geophysical Research: Earth Surface Pub Date : 2024-07-11 DOI:10.1029/2024JF007648
Inge Grünberg, Brian Groenke, Sebastian Westermann, Julia Boike
{"title":"Permafrost and Active Layer Temperature and Freeze/Thaw Timing Reflect Climatic Trends at Bayelva, Svalbard","authors":"Inge Grünberg,&nbsp;Brian Groenke,&nbsp;Sebastian Westermann,&nbsp;Julia Boike","doi":"10.1029/2024JF007648","DOIUrl":null,"url":null,"abstract":"<p>Permafrost warming has been observed all around the Arctic, however, variations in temperature trends and their drivers remain poorly understood. We present a comprehensive analysis of climatic changes spanning 25 years (1998–2023) at Bayelva (78.92094°N, 11.83333°E) on Spitzbergen, Svalbard. The quality controlled hourly data set includes air temperature, radiation fluxes, snow depth, rainfall, active layer temperature and moisture, and, since 2009, permafrost temperature. Our Bayesian trend analysis reveals an annual air temperature increase of 0.9 ± 0.5°C/decade and strongest warming in September and October. We observed a significant shortening of the snow cover by −14 ± 8 days/decade, coupled with reduced winter snow depth. The active layer simultaneously warmed by 0.6 ± 0.7°C/decade at the top and 0.8 ± 0.5°C/decade at the bottom. While the soil surface got drier, in particular during summer, soil moisture below increased in accordance with the longer unfrozen period and higher winter temperatures. The thawed period prolonged by 10–15 days/decade at different depths. In contrast to earlier top-soil warming, we observed stable temperatures since 2010 and only little permafrost warming (0.14 ± 0.13°C/decade). This is likely due to recently stable winter air temperature and continuously decreasing winter snow depth. This recent development highlights a complex interplay among climate and soil variables. Our distinctive long-term data set underscores (a) the changes in seasonal warming patterns, (b) the influential role of snow cover decline, and (c) that air temperature alone is not a sufficient indicator of change in permafrost environments, thereby highlighting the importance of investigating a wider range of parameters, such as soil moisture and snow characteristics.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007648","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007648","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Permafrost warming has been observed all around the Arctic, however, variations in temperature trends and their drivers remain poorly understood. We present a comprehensive analysis of climatic changes spanning 25 years (1998–2023) at Bayelva (78.92094°N, 11.83333°E) on Spitzbergen, Svalbard. The quality controlled hourly data set includes air temperature, radiation fluxes, snow depth, rainfall, active layer temperature and moisture, and, since 2009, permafrost temperature. Our Bayesian trend analysis reveals an annual air temperature increase of 0.9 ± 0.5°C/decade and strongest warming in September and October. We observed a significant shortening of the snow cover by −14 ± 8 days/decade, coupled with reduced winter snow depth. The active layer simultaneously warmed by 0.6 ± 0.7°C/decade at the top and 0.8 ± 0.5°C/decade at the bottom. While the soil surface got drier, in particular during summer, soil moisture below increased in accordance with the longer unfrozen period and higher winter temperatures. The thawed period prolonged by 10–15 days/decade at different depths. In contrast to earlier top-soil warming, we observed stable temperatures since 2010 and only little permafrost warming (0.14 ± 0.13°C/decade). This is likely due to recently stable winter air temperature and continuously decreasing winter snow depth. This recent development highlights a complex interplay among climate and soil variables. Our distinctive long-term data set underscores (a) the changes in seasonal warming patterns, (b) the influential role of snow cover decline, and (c) that air temperature alone is not a sufficient indicator of change in permafrost environments, thereby highlighting the importance of investigating a wider range of parameters, such as soil moisture and snow characteristics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
斯瓦尔巴群岛巴耶尔瓦的永久冻土和活动层温度及冻融时间反映气候趋势
在整个北极地区都观察到了冻土变暖的现象,然而,人们对温度趋势的变化及其驱动因素仍然知之甚少。我们对斯瓦尔巴群岛斯皮茨卑尔根岛的巴耶尔瓦(78.92094°N,11.83333°E)25 年(1998-2023 年)的气候变化进行了全面分析。质量受控的每小时数据集包括气温、辐射通量、积雪深度、降雨量、活动层温度和湿度,以及自 2009 年以来的永久冻土温度。我们的贝叶斯趋势分析表明,气温的年增长率为 0.9 ± 0.5°C/十年,9 月和 10 月的升温幅度最大。我们观察到积雪覆盖时间明显缩短,为-14 ± 8天/十年,同时冬季积雪深度也有所减少。同时,活动层顶部升温 0.6 ± 0.7°C/十年,底部升温 0.8 ± 0.5°C/十年。虽然土壤表层变得更加干燥,尤其是在夏季,但随着解冻期的延长和冬季气温的升高,下层土壤湿度增加。不同深度的解冻期延长了 10-15 天/十年。与早期表层土壤变暖不同的是,我们观察到自 2010 年以来气温稳定,冻土变暖幅度很小(0.14 ± 0.13°C /十年)。这可能是由于最近冬季气温稳定,冬季积雪深度持续下降所致。这一最新进展凸显了气候与土壤变量之间复杂的相互作用。我们独特的长期数据集强调了:(a)季节性变暖模式的变化;(b)积雪覆盖率下降的影响作用;(c)仅凭气温不足以说明永久冻土环境的变化,从而突出了研究土壤湿度和积雪特征等更广泛参数的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
期刊最新文献
Field Validation of the Superelevation Method for Debris-Flow Velocity Estimation Using High-Resolution Lidar and UAV Data Influence of Lithology and Biota on Stream Erosivity and Drainage Density in a Semi-Arid Landscape, Central Chile Erosional Response to Pleistocene Climate Changes in the Brazilian Highlands Dynamic Controls on the Asymmetry of Mouth Bars: Role of Alongshore Currents Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1