A. Åberg, J. Aaron, B. W. McArdell, J. Kirchner, T. de Haas, J. Hirschberg
Estimating flow velocities is key to assessing hazards associated with debris flows. One approach to post-event velocity estimation is the superelevation method, which uses debris-flow mudlines to measure the cross-channel surface inclination, or superelevation, produced by centripetal forces acting on the flow in a bend. Flow velocities are then calculated using a subjective parameterization of the forced vortex equation modified to include a debris-flow specific correction factor. Subjective parameterization of this equation leads to substantial variability and uncertainty in the resulting flow velocities. We present an analysis of the reliability of the superelevation method using a large UAV-based data set of 14 debris flows with front velocities of ∼0.8–6.5 m s−1 and cross-channel surface inclinations of ∼0.6–8.5°, as well as a validation for a single debris flow measured using high-resolution, high-frequency 3D lidar data fused to video imagery. The validation event indicates that when the flow surface inclination can be measured directly, the forced vortex equation produces excellent results without needing a correction factor for Froude numbers ranging from 0.7 to 1.5. This finding indicates that the main challenge with the superelevation method lies in obtaining accurate measurements of superelevation from the mudlines, and that a correction factor may serve to compensate for measurement difficulties rather than variable flow properties. For very small and highly subcritical flows, the superelevation method may generate a large overestimation of flow velocities.
{"title":"Field Validation of the Superelevation Method for Debris-Flow Velocity Estimation Using High-Resolution Lidar and UAV Data","authors":"A. Åberg, J. Aaron, B. W. McArdell, J. Kirchner, T. de Haas, J. Hirschberg","doi":"10.1029/2024JF007857","DOIUrl":"https://doi.org/10.1029/2024JF007857","url":null,"abstract":"<p>Estimating flow velocities is key to assessing hazards associated with debris flows. One approach to post-event velocity estimation is the superelevation method, which uses debris-flow mudlines to measure the cross-channel surface inclination, or superelevation, produced by centripetal forces acting on the flow in a bend. Flow velocities are then calculated using a subjective parameterization of the forced vortex equation modified to include a debris-flow specific correction factor. Subjective parameterization of this equation leads to substantial variability and uncertainty in the resulting flow velocities. We present an analysis of the reliability of the superelevation method using a large UAV-based data set of 14 debris flows with front velocities of ∼0.8–6.5 m s<sup>−1</sup> and cross-channel surface inclinations of ∼0.6–8.5°, as well as a validation for a single debris flow measured using high-resolution, high-frequency 3D lidar data fused to video imagery. The validation event indicates that when the flow surface inclination can be measured directly, the forced vortex equation produces excellent results without needing a correction factor for Froude numbers ranging from 0.7 to 1.5. This finding indicates that the main challenge with the superelevation method lies in obtaining accurate measurements of superelevation from the mudlines, and that a correction factor may serve to compensate for measurement difficulties rather than variable flow properties. For very small and highly subcritical flows, the superelevation method may generate a large overestimation of flow velocities.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 11","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007857","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emma Lodes, Dirk Scherler, Hella Wittmann, Anja M. Schleicher, Jessica A. Stammeier, Martín Andrés Loyola Lafuente, Paulina Grigusova
Drainage density is a fundamental landscape feature that determines the length scale for hillslope sediment transport and results from the competition of diffusive hillslope and advective stream incision processes, whose efficiencies are known to vary with rock type but are notoriously difficult to quantify. Here, we present a comprehensive analysis of a catchment in semi-arid Central Chile, where landscapes with different drainage densities, but equal tectonic and climatic conditions, have formed on three neighboring granitoid plutons (a monzogranite and two diorites). We combined topographic analysis of a 1-m digital elevation model with 10Be-derived denudation rates to estimate stream erosivity and soil diffusivity in the different landscapes. We find that the higher drainage density in the monzogranite is primarily due to higher stream erosivity, whereas soil diffusivity is similar between rock types. Remote sensing data from Landsat imagery confirm field observations of higher vegetation cover in the diorites, especially with regard to deeper-rooted shrubs, which may result in increased infiltration. Based on geochemical and compositional analyses, we link vegetation differences to a relatively higher abundance of plant-essential elements in the diorite bedrock. Additionally, the monzogranite's composition and crystal grain size supports more intense physical weathering and leads to a smaller observed hillslope grain size, which increases its erodibility. We conclude that subtle differences in composition and grain size can have a significant impact on stream erosivity and drainage density. Our results demonstrate the importance of taking lithology into account when interpreting fluvial networks and topographic metrics in slowly eroding landscapes.
{"title":"Influence of Lithology and Biota on Stream Erosivity and Drainage Density in a Semi-Arid Landscape, Central Chile","authors":"Emma Lodes, Dirk Scherler, Hella Wittmann, Anja M. Schleicher, Jessica A. Stammeier, Martín Andrés Loyola Lafuente, Paulina Grigusova","doi":"10.1029/2024JF007684","DOIUrl":"https://doi.org/10.1029/2024JF007684","url":null,"abstract":"<p>Drainage density is a fundamental landscape feature that determines the length scale for hillslope sediment transport and results from the competition of diffusive hillslope and advective stream incision processes, whose efficiencies are known to vary with rock type but are notoriously difficult to quantify. Here, we present a comprehensive analysis of a catchment in semi-arid Central Chile, where landscapes with different drainage densities, but equal tectonic and climatic conditions, have formed on three neighboring granitoid plutons (a monzogranite and two diorites). We combined topographic analysis of a 1-m digital elevation model with <sup>10</sup>Be-derived denudation rates to estimate stream erosivity and soil diffusivity in the different landscapes. We find that the higher drainage density in the monzogranite is primarily due to higher stream erosivity, whereas soil diffusivity is similar between rock types. Remote sensing data from Landsat imagery confirm field observations of higher vegetation cover in the diorites, especially with regard to deeper-rooted shrubs, which may result in increased infiltration. Based on geochemical and compositional analyses, we link vegetation differences to a relatively higher abundance of plant-essential elements in the diorite bedrock. Additionally, the monzogranite's composition and crystal grain size supports more intense physical weathering and leads to a smaller observed hillslope grain size, which increases its erodibility. We conclude that subtle differences in composition and grain size can have a significant impact on stream erosivity and drainage density. Our results demonstrate the importance of taking lithology into account when interpreting fluvial networks and topographic metrics in slowly eroding landscapes.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"129 11","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007684","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142642272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vincent Godard, Lionel L. Siame, Andre A. R. Salgado, ASTER Team
Plio-Quaternary climatic changes are considered to be a key driver of landscape evolution, but many unresolved questions remain, such as the extent of the impact of major climatic shifts such as the Mid-Pleistocene Transition (MPT). Various geochronological methods are available to infer changes in surface processes over the Plio-Quaternary, and Terrestrial Cosmogenic Nuclides (TCN) have proven to be one of the most efficient tools to reconstruct paleo-denudation. Implementing these approaches requires very specific conditions, such as well-preserved and extensive sediment sequences. Developing alternative methods to document the evolution of denudation is thus of major interest to retrieve information on the evolution of denudation in places where recent detrital sediment records are absent. We explore the evolution of landscape erosion over a