Semantic sensor data annotation method for industrial scene efficiency optimization to enable digital economy

IF 0.9 Q4 TELECOMMUNICATIONS Internet Technology Letters Pub Date : 2024-03-14 DOI:10.1002/itl2.508
Na Tao, Tao Zhang
{"title":"Semantic sensor data annotation method for industrial scene efficiency optimization to enable digital economy","authors":"Na Tao,&nbsp;Tao Zhang","doi":"10.1002/itl2.508","DOIUrl":null,"url":null,"abstract":"<p>In the digital economy era, efficiently leveraging the vast amount of sensor data generated by the Industrial Internet of Things (IIoT) is essential. This paper presents an innovative semantic annotation method for industrial sensor data, designed to optimize data processing and enhance system efficiency. Our method combines cluster analysis, ontology development, and rule-based reasoning to automatically annotate IIoT sensory data. By utilizing data aggregation and filtering mechanisms, which incorporate the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm and a rule engine, we significantly reduce the data volume required for annotation. The Semantic Web Rule Language aids in naming new concepts and properties identified through clustering, contributing further to the automation of data processing. Experimental results, using public datasets, validate the effectiveness of our method, showing a reduction in data volume by about 20% and underscoring its potential in enhancing industrial systems' automation and overall efficiency.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"7 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In the digital economy era, efficiently leveraging the vast amount of sensor data generated by the Industrial Internet of Things (IIoT) is essential. This paper presents an innovative semantic annotation method for industrial sensor data, designed to optimize data processing and enhance system efficiency. Our method combines cluster analysis, ontology development, and rule-based reasoning to automatically annotate IIoT sensory data. By utilizing data aggregation and filtering mechanisms, which incorporate the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm and a rule engine, we significantly reduce the data volume required for annotation. The Semantic Web Rule Language aids in naming new concepts and properties identified through clustering, contributing further to the automation of data processing. Experimental results, using public datasets, validate the effectiveness of our method, showing a reduction in data volume by about 20% and underscoring its potential in enhancing industrial systems' automation and overall efficiency.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向工业场景效率优化的语义传感器数据标注方法,助力数字经济发展
在数字经济时代,有效利用工业物联网(IIoT)产生的大量传感器数据至关重要。本文介绍了一种创新的工业传感器数据语义注释方法,旨在优化数据处理并提高系统效率。我们的方法结合了聚类分析、本体开发和基于规则的推理来自动注释 IIoT 感知数据。通过利用数据聚合和过滤机制,结合 DBSCAN(基于密度的噪声应用空间聚类)算法和规则引擎,我们大大减少了注释所需的数据量。语义网规则语言有助于命名通过聚类确定的新概念和属性,从而进一步促进数据处理的自动化。使用公共数据集的实验结果验证了我们方法的有效性,显示数据量减少了约 20%,并强调了其在提高工业系统自动化和整体效率方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Issue Information AI-Driven Big Data Analytics for Mobile Healthcare Hadamard and Riemann Matrix-Based SLM for PAPR Reduction in OTFS Signal NB-IoT: Analytical Perspective of IP Data Delivery Variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1