Emma M. Dangerfield , Michael A. Meijlink , Alex A. Hunt-Painter , Seyed A. Nasseri , Stephen G. Withers , Bridget L. Stocker , Mattie S.M. Timmer
{"title":"Synthesis and glycosidase inhibition of 3,4,5-trihydroxypiperidines using a one-pot amination-cyclisation cascade reaction","authors":"Emma M. Dangerfield , Michael A. Meijlink , Alex A. Hunt-Painter , Seyed A. Nasseri , Stephen G. Withers , Bridget L. Stocker , Mattie S.M. Timmer","doi":"10.1016/j.carres.2024.109198","DOIUrl":null,"url":null,"abstract":"<div><p>Trihydroxypiperidines are a therapeutically valuable class of iminosugar. We applied a one-pot amination-cyclisation cascade reaction to synthesise 3,4,5-trihydroxypiperidine stereoisomers in three steps from commercially available pentoses and in excellent overall yields. Using our methodology, the yields of the syntheses of <strong><em>meso</em>-1</strong>, <strong><em>meso</em>-2</strong> and <strong>3L</strong> are the highest reported to date. The synthetic methodology was readily extended to the three-step synthesis of <em>N</em>-alkyl derivatives by replacing the ammonia nitrogen source with a primary amine. The trihydroxypiperidines and <em>N</em>-alkyl analogues were screened for enzyme inhibitory activity using Fabrazyme (Fabry disease), GCase (Gaucher's disease), <em>Agrobacterium</em> sp. β-glucosidase, and <em>Escherichia coli</em> β-galactosidase. <em>N</em>-Phenylethyl 3,4,5-trihydroxypiperidine (<em>N</em>-phenylethyl-1-(3<em>R</em>,4<em>R</em>,5<em>S</em>)-piperidine-3,4,5-triol) showed good inhibitory activity of Fabrazyme (<em>K</em><sub>i</sub> = 46 μM). This activity was abolished when the <em>N</em>-phenylethyl group was removed or replaced with a non-aromatic alkyl chain.</p></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008621524001770/pdfft?md5=d0a10f2048fed1a52bbd104f83b6ed34&pid=1-s2.0-S0008621524001770-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524001770","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Trihydroxypiperidines are a therapeutically valuable class of iminosugar. We applied a one-pot amination-cyclisation cascade reaction to synthesise 3,4,5-trihydroxypiperidine stereoisomers in three steps from commercially available pentoses and in excellent overall yields. Using our methodology, the yields of the syntheses of meso-1, meso-2 and 3L are the highest reported to date. The synthetic methodology was readily extended to the three-step synthesis of N-alkyl derivatives by replacing the ammonia nitrogen source with a primary amine. The trihydroxypiperidines and N-alkyl analogues were screened for enzyme inhibitory activity using Fabrazyme (Fabry disease), GCase (Gaucher's disease), Agrobacterium sp. β-glucosidase, and Escherichia coli β-galactosidase. N-Phenylethyl 3,4,5-trihydroxypiperidine (N-phenylethyl-1-(3R,4R,5S)-piperidine-3,4,5-triol) showed good inhibitory activity of Fabrazyme (Ki = 46 μM). This activity was abolished when the N-phenylethyl group was removed or replaced with a non-aromatic alkyl chain.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".