Synchronized lineage tracing of cell membranes and nuclei by dual recombinases and dual fluorescent.

IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Genetics and Genomics Pub Date : 2024-07-10 DOI:10.1016/j.jgg.2024.07.006
Xueying Yang, Shun He, Xufeng Li, Zhihou Guo, Haichang Wang, Zhuonan Zhang, Xin Song, Ke Jia, Lingjuan He, Bin Zhou
{"title":"Synchronized lineage tracing of cell membranes and nuclei by dual recombinases and dual fluorescent.","authors":"Xueying Yang, Shun He, Xufeng Li, Zhihou Guo, Haichang Wang, Zhuonan Zhang, Xin Song, Ke Jia, Lingjuan He, Bin Zhou","doi":"10.1016/j.jgg.2024.07.006","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic lineage tracing has been widely employed to investigate cell lineages and fate. However, conventional reporting systems often label the entire cytoplasm, making it challenging to discern cell boundaries. Additionally, single Cre-loxP recombination systems have limitations in tracing specific cell populations. This study proposes three reporting systems that utilizing Cre, Dre, and Dre + Cre mediated recombination. These systems incorporate tdTomato expression on the cell membrane and PhiYFP expression within the nucleus, allowing for clear observation of the nucleus and membrane. The efficacy of these systems is successfully demonstrated by labeling cardiomyocytes and hepatocytes. The potential for dynamic visualization of the cell membrane is showcased using intravital imaging microscopy or three-dimensional imaging. Furthermore, by combining this dual recombinase system with the ProTracer system, hepatocyte proliferation is traced with enhanced precision. This reporting system holds significant importance for advancing the understanding of cell fate studies in development, homeostasis, and diseases.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jgg.2024.07.006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic lineage tracing has been widely employed to investigate cell lineages and fate. However, conventional reporting systems often label the entire cytoplasm, making it challenging to discern cell boundaries. Additionally, single Cre-loxP recombination systems have limitations in tracing specific cell populations. This study proposes three reporting systems that utilizing Cre, Dre, and Dre + Cre mediated recombination. These systems incorporate tdTomato expression on the cell membrane and PhiYFP expression within the nucleus, allowing for clear observation of the nucleus and membrane. The efficacy of these systems is successfully demonstrated by labeling cardiomyocytes and hepatocytes. The potential for dynamic visualization of the cell membrane is showcased using intravital imaging microscopy or three-dimensional imaging. Furthermore, by combining this dual recombinase system with the ProTracer system, hepatocyte proliferation is traced with enhanced precision. This reporting system holds significant importance for advancing the understanding of cell fate studies in development, homeostasis, and diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用双重组酶和双荧光对细胞膜和细胞核进行同步系谱追踪。
基因谱系追踪已被广泛用于研究细胞谱系和命运。然而,传统的报告系统通常会标记整个细胞质,这就给辨别细胞边界带来了挑战。此外,单一的 Cre-loxP 重组系统在追踪特定细胞群方面也有局限性。本研究提出了三种利用 Cre、Dre 和 Dre + Cre 介导重组的报告系统。这些系统结合了细胞膜上的tdTomato表达和细胞核内的PhiYFP表达,可清晰观察细胞核和细胞膜。通过标记心肌细胞和肝细胞,成功证明了这些系统的功效。利用体内成像显微镜或三维成像,展示了细胞膜动态可视化的潜力。此外,通过将这种双重组酶系统与 ProTracer 系统相结合,还能更精确地追踪肝细胞的增殖情况。该报告系统对于促进对发育、稳态和疾病中细胞命运研究的理解具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Genetics and Genomics
Journal of Genetics and Genomics 生物-生化与分子生物学
CiteScore
8.20
自引率
3.40%
发文量
4756
审稿时长
14 days
期刊介绍: The Journal of Genetics and Genomics (JGG, formerly known as Acta Genetica Sinica ) is an international journal publishing peer-reviewed articles of novel and significant discoveries in the fields of genetics and genomics. Topics of particular interest include but are not limited to molecular genetics, developmental genetics, cytogenetics, epigenetics, medical genetics, population and evolutionary genetics, genomics and functional genomics as well as bioinformatics and computational biology.
期刊最新文献
A-to-G/C/T and C-to-T/G/A dual-function base editor for creating multi-nucleotide variants. Improving precision base editing of the zebrafish genome by Rad51DBD-incorporated single-base editors. Genome-wide DNA methylation profile and predictive biomarkers in premature ovarian insufficiency. The interplay between histone modifications and nuclear lamina in genome regulation. bmp10 maintains cardiac function by regulating iron homeostasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1