Bikram Karmakar, Ann G Zauber, Anne I Hahn, Yan Kwan Lau, Chyke A Doubeni, Marshall M Joffe
{"title":"Bias due to coarsening of time intervals in the inference for the effectiveness of colorectal cancer screening.","authors":"Bikram Karmakar, Ann G Zauber, Anne I Hahn, Yan Kwan Lau, Chyke A Doubeni, Marshall M Joffe","doi":"10.1093/ije/dyae096","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Observational studies are frequently used to estimate the comparative effectiveness of different colorectal cancer (CRC) screening methods due to the practical limitations and time needed to conduct large clinical trials. However, time-varying confounders, e.g. polyp detection in the last screening, can bias statistical results. Recently, generalized methods, or G-methods, have been used for the analysis of observational studies of CRC screening, given their ability to account for such time-varying confounders. Discretization, or the process of converting continuous functions into discrete counterparts, is required for G-methods when the treatment and outcomes are assessed at a continuous scale.</p><p><strong>Development: </strong>This paper evaluates the interplay between time-varying confounding and discretization, which can induce bias in assessing screening effectiveness. We investigate this bias in evaluating the effect of different CRC screening methods that differ from each other in typical screening frequency.</p><p><strong>Application: </strong>First, using theory, we establish the direction of the bias. Then, we use simulations of hypothetical settings to study the bias magnitude for varying levels of discretization, frequency of screening and length of the study period. We develop a method to assess possible bias due to coarsening in simulated situations.</p><p><strong>Conclusions: </strong>The proposed method can inform future studies of screening effectiveness, especially for CRC, by determining the choice of interval lengths where data are discretized to minimize bias due to coarsening while balancing computational costs.</p>","PeriodicalId":14147,"journal":{"name":"International journal of epidemiology","volume":"53 4","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ije/dyae096","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Observational studies are frequently used to estimate the comparative effectiveness of different colorectal cancer (CRC) screening methods due to the practical limitations and time needed to conduct large clinical trials. However, time-varying confounders, e.g. polyp detection in the last screening, can bias statistical results. Recently, generalized methods, or G-methods, have been used for the analysis of observational studies of CRC screening, given their ability to account for such time-varying confounders. Discretization, or the process of converting continuous functions into discrete counterparts, is required for G-methods when the treatment and outcomes are assessed at a continuous scale.
Development: This paper evaluates the interplay between time-varying confounding and discretization, which can induce bias in assessing screening effectiveness. We investigate this bias in evaluating the effect of different CRC screening methods that differ from each other in typical screening frequency.
Application: First, using theory, we establish the direction of the bias. Then, we use simulations of hypothetical settings to study the bias magnitude for varying levels of discretization, frequency of screening and length of the study period. We develop a method to assess possible bias due to coarsening in simulated situations.
Conclusions: The proposed method can inform future studies of screening effectiveness, especially for CRC, by determining the choice of interval lengths where data are discretized to minimize bias due to coarsening while balancing computational costs.
期刊介绍:
The International Journal of Epidemiology is a vital resource for individuals seeking to stay updated on the latest advancements and emerging trends in the field of epidemiology worldwide.
The journal fosters communication among researchers, educators, and practitioners involved in the study, teaching, and application of epidemiology pertaining to both communicable and non-communicable diseases. It also includes research on health services and medical care.
Furthermore, the journal presents new methodologies in epidemiology and statistics, catering to professionals working in social and preventive medicine. Published six times a year, the International Journal of Epidemiology provides a comprehensive platform for the analysis of data.
Overall, this journal is an indispensable tool for staying informed and connected within the dynamic realm of epidemiology.