{"title":"Physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated in underlying of ischemia/reperfusion injury in different organs.","authors":"Izadpanah Gheitasi, Ghaidafeh Akbari, Feryal Savari","doi":"10.1007/s11010-024-05052-7","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemia-reperfusion (I/R) injury, as a pathological phenomenon, takes place when blood supply to an organ is disrupted and then aggravated during restoration of blood flow. Ischemic preconditioning (IPC) is a potent method for attenuating subsequent events of IR damage in numerous organs. IPC protocol is determined by a brief and sequential time periods of I/R before the main ischemia. MicroRNAs are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review introduces the physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated after I/R insult in different organs such as the liver, kidney, heart, brain, and intestine. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2023. Based on these literature studies, IPC/IR intervention can affect cellular mechanisms including oxidative stress, apoptosis, angiogenesis, and inflammation through up-regulation or down-regulation of multiple microRNAs and their target genes.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"855-868"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-024-05052-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ischemia-reperfusion (I/R) injury, as a pathological phenomenon, takes place when blood supply to an organ is disrupted and then aggravated during restoration of blood flow. Ischemic preconditioning (IPC) is a potent method for attenuating subsequent events of IR damage in numerous organs. IPC protocol is determined by a brief and sequential time periods of I/R before the main ischemia. MicroRNAs are endogenous non-coding RNAs that regulate post-transcriptionally target mRNA translation via degrading it and/or suppressing protein synthesis. This review introduces the physiological and cellular mechanisms of ischemic preconditioning microRNAs-mediated after I/R insult in different organs such as the liver, kidney, heart, brain, and intestine. Data of this review have been collected from the scientific articles published in databases such as Science Direct, Scopus, PubMed, Web of Science, and Scientific Information Database from 2000 to 2023. Based on these literature studies, IPC/IR intervention can affect cellular mechanisms including oxidative stress, apoptosis, angiogenesis, and inflammation through up-regulation or down-regulation of multiple microRNAs and their target genes.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.