Near surface camera informed agricultural land monitoring for climate smart agriculture

Le Yu , Zhenrong Du , Xiyu Li , Qiang Zhao , Hui Wu , Duoji weise , Xinqun Yuan , Yuanzheng Yang , Wenhua Cai , Weimin Song , Pei Wang , Zhicong Zhao , Ying Long , Yongguang Zhang , Jinbang Peng , Xiaoping Xin , Fei Xu , Miaogen Shen , Hui Wang , Yuanmei Jiao , Yong Luo
{"title":"Near surface camera informed agricultural land monitoring for climate smart agriculture","authors":"Le Yu ,&nbsp;Zhenrong Du ,&nbsp;Xiyu Li ,&nbsp;Qiang Zhao ,&nbsp;Hui Wu ,&nbsp;Duoji weise ,&nbsp;Xinqun Yuan ,&nbsp;Yuanzheng Yang ,&nbsp;Wenhua Cai ,&nbsp;Weimin Song ,&nbsp;Pei Wang ,&nbsp;Zhicong Zhao ,&nbsp;Ying Long ,&nbsp;Yongguang Zhang ,&nbsp;Jinbang Peng ,&nbsp;Xiaoping Xin ,&nbsp;Fei Xu ,&nbsp;Miaogen Shen ,&nbsp;Hui Wang ,&nbsp;Yuanmei Jiao ,&nbsp;Yong Luo","doi":"10.1016/j.csag.2024.100008","DOIUrl":null,"url":null,"abstract":"<div><p>Continuous and accurate monitoring of agricultural landscapes is crucial for understanding crop phenology and responding to climatic and anthropogenic changes. However, the widely used optical satellite remote sensing is limited by revisit cycles and weather conditions, leading to gaps in agricultural monitoring. To address these limitations, we designed and deployed a Near Surface Camera (NSCam) Network across China, and explored its application in agricultural land monitoring and achieving climate-smart agriculture (CSA). By analyzing the image data captured by the NSCam Network, we can accurately assess long-term or abrupt agricultural land changes. According to the preliminary monitoring results, integrating NSCam data with remote sensing imagery greatly enhances the temporal details and accuracy of agricultural monitoring, aiding agricultural managers in making informed decisions. The impacts of abnormal weather conditions and human activities on agricultural land, which are not captured by remote sensing imagery, can be complemented by incorporating our NSCam Network. The successful implementation of this method underscores its potential for broader application in CSA, promoting resilient and sustainable agricultural practices.</p></div>","PeriodicalId":100262,"journal":{"name":"Climate Smart Agriculture","volume":"1 1","pages":"Article 100008"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S295040902400008X/pdfft?md5=6469db54577239abf9e1cab9b8ea62db&pid=1-s2.0-S295040902400008X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate Smart Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295040902400008X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Continuous and accurate monitoring of agricultural landscapes is crucial for understanding crop phenology and responding to climatic and anthropogenic changes. However, the widely used optical satellite remote sensing is limited by revisit cycles and weather conditions, leading to gaps in agricultural monitoring. To address these limitations, we designed and deployed a Near Surface Camera (NSCam) Network across China, and explored its application in agricultural land monitoring and achieving climate-smart agriculture (CSA). By analyzing the image data captured by the NSCam Network, we can accurately assess long-term or abrupt agricultural land changes. According to the preliminary monitoring results, integrating NSCam data with remote sensing imagery greatly enhances the temporal details and accuracy of agricultural monitoring, aiding agricultural managers in making informed decisions. The impacts of abnormal weather conditions and human activities on agricultural land, which are not captured by remote sensing imagery, can be complemented by incorporating our NSCam Network. The successful implementation of this method underscores its potential for broader application in CSA, promoting resilient and sustainable agricultural practices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用近地相机对农田进行监测,促进气候智能型农业的发展
对农业景观进行连续、准确的监测对于了解作物物候以及应对气候和人为变化至关重要。然而,广泛使用的光学卫星遥感受到重访周期和天气条件的限制,导致农业监测出现空白。针对这些局限性,我们设计并在中国各地部署了近地面相机(NSCam)网络,探索其在农田监测和实现气候智能农业(CSA)中的应用。通过分析近地相机网络获取的图像数据,我们可以准确评估农田的长期或突然变化。根据初步监测结果,将 NSCam 数据与遥感图像相结合,可大大提高农业监测的时间细节和准确性,帮助农业管理者做出明智决策。对于遥感图像无法捕捉到的异常天气条件和人类活动对农田的影响,可以通过结合我们的 NSCam 网络进行补充。这种方法的成功实施突出表明,它有可能在全面农业研究中得到更广泛的应用,从而促进弹性和可持续的农业实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of crop straw with different C/N ratio affects CH4 emission and Cd accumulation in rice (Oryza sativa L.) in Cd polluted paddy soils Amine ester improves rice growth and resistance by promoting ammonium and potassium uptake Effect of elevated temperature and CO2 on growth of two early-maturing potato (Solanum tuberosum L.) varieties Maize–peanut intercropping and N fertilization changed the potential nitrification rate by regulating the ratio of AOB to AOA in soils Assessing spatiotemporal variations of soil organic carbon and its vulnerability to climate change: A bottom-up machine learning approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1