Geobatteries in environmental biogeochemistry: Electron transfer and utilization

IF 14 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Environmental Science and Ecotechnology Pub Date : 2024-07-02 DOI:10.1016/j.ese.2024.100446
Shihao Cui , Rui Wang , Qing Chen , Lorenzo Pugliese , Shubiao Wu
{"title":"Geobatteries in environmental biogeochemistry: Electron transfer and utilization","authors":"Shihao Cui ,&nbsp;Rui Wang ,&nbsp;Qing Chen ,&nbsp;Lorenzo Pugliese ,&nbsp;Shubiao Wu","doi":"10.1016/j.ese.2024.100446","DOIUrl":null,"url":null,"abstract":"<div><p>The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil–water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil–water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666498424000607/pdfft?md5=405392aab693313bd59d790efc365d2f&pid=1-s2.0-S2666498424000607-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498424000607","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency of direct electron flow from electron donors to electron acceptors in redox reactions is significantly influenced by the spatial separation of these components. Geobatteries, a class of redox-active substances naturally present in soil–water systems, act as electron reservoirs, reversibly donating, storing, and accepting electrons. This capability allows the temporal and spatial decoupling of redox half-reactions, providing a flexible electron transfer mechanism. In this review, we systematically examine the critical role of geobatteries in influencing electron transfer and utilization in environmental biogeochemical processes. Typical redox-active centers within geobatteries, such as quinone-like moieties, nitrogen- and sulfur-containing groups, and variable-valent metals, possess the potential to repeatedly charge and discharge. Various characterization techniques, ranging from qualitative methods like elemental analysis, imaging, and spectroscopy, to quantitative techniques such as chemical, spectroscopic, and electrochemical methods, have been developed to evaluate this reversible electron transfer capacity. Additionally, current research on the ecological and environmental significance of geobatteries extends beyond natural soil–water systems (e.g., soil carbon cycle) to engineered systems such as water treatment (e.g., nitrogen removal) and waste management (e.g., anaerobic digestion). Despite these advancements, challenges such as the complexity of environmental systems, difficulties in accurately quantifying electron exchange capacity, and scaling-up issues must be addressed to fully unlock their potential. This review underscores both the promise and challenges associated with geobatteries in responding to environmental issues, such as climate change and pollutant transformation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境生物地球化学中的地球电池:电子转移和利用
在氧化还原反应中,电子从电子供体直接流向电子受体的效率在很大程度上受到这些成分空间隔离的影响。地质电池是土壤-水系统中天然存在的一类氧化还原活性物质,可作为电子库,可逆地提供、储存和接受电子。这种能力允许氧化还原半反应在时间和空间上解耦,提供了一种灵活的电子转移机制。在这篇综述中,我们将系统研究地球电池在影响环境生物地球化学过程中电子转移和利用方面的关键作用。地质电池中典型的氧化还原活性中心,如醌类分子、含氮和含硫基团以及变价金属,具有反复充电和放电的潜力。为评估这种可逆电子转移能力,已开发出各种表征技术,从元素分析、成像和光谱等定性方法,到化学、光谱和电化学方法等定量技术,不一而足。此外,目前对地球电池的生态和环境意义的研究已从自然土壤-水系统(如土壤碳循环)扩展到水处理(如脱氮)和废物管理(如厌氧消化)等工程系统。尽管取得了这些进展,但要充分释放电子交换技术的潜力,还必须解决环境系统的复杂性、电子交换容量的精确量化困难以及规模扩大等问题。本综述强调了地球电池在应对气候变化和污染物转化等环境问题方面的前景和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
20.40
自引率
6.30%
发文量
11
审稿时长
18 days
期刊介绍: Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.
期刊最新文献
Trusted artificial intelligence for environmental assessments: An explainable high-precision model with multi-source big data Hydrodynamic and trophic variations reshape macroinvertebrate food webs in urban ecosystems Wintertime ozone surges: The critical role of alkene ozonolysis Stability of sedimentary organic matter: Insights from molecular and redox analyses Characterizing PFASs in aquatic ecosystems with 3D hydrodynamic and water quality models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1