Fuwei Gu , Hao Wang , Zhongliang Cao , Jiawen Qi , Pei Zhang , Xinkun Wang , Guoliang Ma
{"title":"Theoretical study on 3D elastic response and first layer failure strength of composite cylinders subjected to axisymmetric loadings","authors":"Fuwei Gu , Hao Wang , Zhongliang Cao , Jiawen Qi , Pei Zhang , Xinkun Wang , Guoliang Ma","doi":"10.1016/j.ijpvp.2024.105245","DOIUrl":null,"url":null,"abstract":"<div><p>The traditional Lekhnitskii 3D elastic theory can obtain the exact stress and strain response of the composite cylinder under the axially symmetric loadings. However, when the cylinder contains 0° winding layers or isotropic layers, some calculation parameters corresponding to the two kinds of special layers will become singular. By analyzing the continuity of singular parameters and calculating their limits, the problem of singular parameters can be effectively solved and the Lekhnitskii theory can be extended to composite thick-walled cylinders with arbitrary winding angles. Furthermore, based on the Chang-Chang strength criterion of composite layers and the ideal elastic-plastic assumption of isotropic metal layers, the theoretical calculation method of first layer failure strength and the corresponding failure modes of the composite cylinders subjected to axisymmetric loadings was proposed. Then, the composite cylinder with metal liner was fabricated by fiber winding process. The experimental blasting pressure of the cylinder was 52.8 MPa with a major failure mode of fiber tensile fracture. Based on the proposed theoretical method, the cylinder's first layer failure strength of internal pressure was 44.1 MPa, and the initial failure mode was also fiber tensile fracture. The predicted result of the first layer failure strength was lower than the experimental results. The result proved the safety and economy of the proposed theoretical method for the initial design of the composite cylinder.</p></div>","PeriodicalId":54946,"journal":{"name":"International Journal of Pressure Vessels and Piping","volume":"210 ","pages":"Article 105245"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pressure Vessels and Piping","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308016124001224","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The traditional Lekhnitskii 3D elastic theory can obtain the exact stress and strain response of the composite cylinder under the axially symmetric loadings. However, when the cylinder contains 0° winding layers or isotropic layers, some calculation parameters corresponding to the two kinds of special layers will become singular. By analyzing the continuity of singular parameters and calculating their limits, the problem of singular parameters can be effectively solved and the Lekhnitskii theory can be extended to composite thick-walled cylinders with arbitrary winding angles. Furthermore, based on the Chang-Chang strength criterion of composite layers and the ideal elastic-plastic assumption of isotropic metal layers, the theoretical calculation method of first layer failure strength and the corresponding failure modes of the composite cylinders subjected to axisymmetric loadings was proposed. Then, the composite cylinder with metal liner was fabricated by fiber winding process. The experimental blasting pressure of the cylinder was 52.8 MPa with a major failure mode of fiber tensile fracture. Based on the proposed theoretical method, the cylinder's first layer failure strength of internal pressure was 44.1 MPa, and the initial failure mode was also fiber tensile fracture. The predicted result of the first layer failure strength was lower than the experimental results. The result proved the safety and economy of the proposed theoretical method for the initial design of the composite cylinder.
期刊介绍:
Pressure vessel engineering technology is of importance in many branches of industry. This journal publishes the latest research results and related information on all its associated aspects, with particular emphasis on the structural integrity assessment, maintenance and life extension of pressurised process engineering plants.
The anticipated coverage of the International Journal of Pressure Vessels and Piping ranges from simple mass-produced pressure vessels to large custom-built vessels and tanks. Pressure vessels technology is a developing field, and contributions on the following topics will therefore be welcome:
• Pressure vessel engineering
• Structural integrity assessment
• Design methods
• Codes and standards
• Fabrication and welding
• Materials properties requirements
• Inspection and quality management
• Maintenance and life extension
• Ageing and environmental effects
• Life management
Of particular importance are papers covering aspects of significant practical application which could lead to major improvements in economy, reliability and useful life. While most accepted papers represent the results of original applied research, critical reviews of topical interest by world-leading experts will also appear from time to time.
International Journal of Pressure Vessels and Piping is indispensable reading for engineering professionals involved in the energy, petrochemicals, process plant, transport, aerospace and related industries; for manufacturers of pressure vessels and ancillary equipment; and for academics pursuing research in these areas.