Defect-induced in situ electron-metal-support interactions on MOFs accelerating Fe(III) reduction for high-efficiency Fenton reactions

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2024-06-01 DOI:10.1016/S1872-2067(24)60047-1
Haifang Mao , Yang Liu , Zhenmin Xu , Zhenfeng Bian
{"title":"Defect-induced in situ electron-metal-support interactions on MOFs accelerating Fe(III) reduction for high-efficiency Fenton reactions","authors":"Haifang Mao ,&nbsp;Yang Liu ,&nbsp;Zhenmin Xu ,&nbsp;Zhenfeng Bian","doi":"10.1016/S1872-2067(24)60047-1","DOIUrl":null,"url":null,"abstract":"<div><p>The inefficient reduction of Fe<sup>3+</sup> and activation of H<sub>2</sub>O<sub>2</sub> in the Fenton reaction severely limit its application in practical water treatment. In this study, we developed defective NH<sub>2</sub>-UiO-66 (d-NU) with coordinated unsaturated metal sites by adjusting the coordination configuration of Zr, creating a solid-liquid interface to facilitate Fe<sup>3+</sup> reduction and the sustainable generation of •OH from H<sub>2</sub>O<sub>2</sub> activation. The d-NU/Fe<sup>3+</sup>/H<sub>2</sub>O<sub>2</sub>/Vis system demonstrated highly efficient removal of various organic pollutants, with a rapid Fe<sup>2+</sup> regeneration rate and exceptional stability over ten cycles. The degradation rate constant of d-NU (0.16112 min<sup>–1</sup>) was 11 times higher than that of NH<sub>2</sub>-UiO-66 (NU) (0.01466 min<sup>–1</sup>) without defects. Characterization combined with density functional calculations revealed that defects induced coordination unsaturation of the Zr sites, leading to <em>in situ</em> electron-metal-support interactions between Fe<sup>3+</sup> and the support <em>via</em> Zr–O–Fe bridges. This accumulation of electrons from the unsaturated Zr sites enabled the adsorption of Fe<sup>3+</sup> at the solid-liquid interface, promoting the formation of Fe<sup>2+</sup> across a wide pH range with a reduced energy barrier. This study introduces a promising strategy for accelerating Fe<sup>3+</sup> reduction in the solid-liquid interfacial Fenton process for the degradation of organic pollutants.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"61 ","pages":"Pages 247-258"},"PeriodicalIF":15.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600471","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The inefficient reduction of Fe3+ and activation of H2O2 in the Fenton reaction severely limit its application in practical water treatment. In this study, we developed defective NH2-UiO-66 (d-NU) with coordinated unsaturated metal sites by adjusting the coordination configuration of Zr, creating a solid-liquid interface to facilitate Fe3+ reduction and the sustainable generation of •OH from H2O2 activation. The d-NU/Fe3+/H2O2/Vis system demonstrated highly efficient removal of various organic pollutants, with a rapid Fe2+ regeneration rate and exceptional stability over ten cycles. The degradation rate constant of d-NU (0.16112 min–1) was 11 times higher than that of NH2-UiO-66 (NU) (0.01466 min–1) without defects. Characterization combined with density functional calculations revealed that defects induced coordination unsaturation of the Zr sites, leading to in situ electron-metal-support interactions between Fe3+ and the support via Zr–O–Fe bridges. This accumulation of electrons from the unsaturated Zr sites enabled the adsorption of Fe3+ at the solid-liquid interface, promoting the formation of Fe2+ across a wide pH range with a reduced energy barrier. This study introduces a promising strategy for accelerating Fe3+ reduction in the solid-liquid interfacial Fenton process for the degradation of organic pollutants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MOFs 上缺陷诱导的原位电子-金属-支撑相互作用可加速铁(III)还原,从而实现高效芬顿反应
在芬顿反应中,Fe3+ 的还原和 H2O2 的活化效率低下,严重限制了芬顿反应在实际水处理中的应用。在本研究中,我们通过调整 Zr 的配位构型,开发出了具有配位不饱和金属位点的缺陷 NH2-UiO-66(d-NU),从而形成了固液界面,促进了 Fe3+ 的还原和 H2O2 激活产生的 -OH 的可持续生成。d-NU/Fe3+/H2O2/Vis 系统对各种有机污染物的去除效率极高,Fe2+ 再生速度快,而且在十次循环中表现出超强的稳定性。d-NU 的降解速率常数(0.16112 min-1)是无缺陷 NH2-UiO-66 (NU) 的降解速率常数(0.01466 min-1)的 11 倍。表征与密度泛函计算相结合发现,缺陷诱导了 Zr 位点的配位不饱和,导致 Fe3+ 与支撑物之间通过 Zr-O-Fe 桥发生原位电子-金属-支撑相互作用。这种来自不饱和 Zr 位点的电子积累使 Fe3+ 得以吸附在固液界面上,从而在较宽的 pH 值范围内促进了 Fe2+ 的形成,并降低了能障。这项研究提出了一种在固液界面芬顿过程中加速 Fe3+ 还原以降解有机污染物的可行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Structural regulation strategies of nitrogen reduction electrocatalysts Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction Enhanced electrochemical carbon dioxide reduction in membrane electrode assemblies with acidic electrolytes through a silicate buffer layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1