Ting Zhao , Bingbing Gong , Guancheng Xu , Jiahui Jiang , Li Zhang
{"title":"In situ surface reconstruction of heterostructure Ni2P/CoP/FeP4 nanowires network catalyst for high-current-density overall water splitting","authors":"Ting Zhao , Bingbing Gong , Guancheng Xu , Jiahui Jiang , Li Zhang","doi":"10.1016/S1872-2067(24)60037-9","DOIUrl":null,"url":null,"abstract":"<div><p>Considering the imperative need for cost-effective electrocatalysts for water electrolysis, a novel Ni<sub>2</sub>P/CoP/FeP<sub>4</sub>/IF electrocatalyst nanowires network was synthesized in this study. Owing to the strong synergistic effects and high exposure of the active sites, Ni<sub>2</sub>P/CoP/FeP<sub>4</sub>/IF exhibited exceptional performance in both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), demonstrating low overpotentials of 218 and 127 mV at 100 mA cm<sup>–2</sup> in alkaline media, respectively. Furthermore, the water electrolyzer based on Ni<sub>2</sub>P/CoP/FeP<sub>4</sub>/IF bifunctional catalyst requires only 1.50 and 2.05 V to reach 10 and 500 mA cm<sup>–2</sup>, respectively, indicating its potential for large-scale hydrogen production. Comprehensive <em>ex situ</em> characterizations and <em>in situ</em> Raman spectra reveal that Ni<sub>2</sub>P/CoP/FeP<sub>4</sub>/IF undergoes rapid reconstruction during the OER to form the corresponding (oxy) hydroxide species, which serve as the real active sites. Furthermore, density functional theory calculations clarified that during the HER process, H<sub>2</sub>O is adsorbed at the Fe site of Ni<sub>2</sub>P/CoP/FeP<sub>4</sub>/IF for hydrolysis, with the resultant H* adsorbed at the Ni site for desorption. Introducing CoP promoted water adsorption and increased the HER activity of the catalyst. Hence, this study offers a pathway for designing highly efficient catalysts that leverage the interface effects.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"61 ","pages":"Pages 269-280"},"PeriodicalIF":15.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600379","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Considering the imperative need for cost-effective electrocatalysts for water electrolysis, a novel Ni2P/CoP/FeP4/IF electrocatalyst nanowires network was synthesized in this study. Owing to the strong synergistic effects and high exposure of the active sites, Ni2P/CoP/FeP4/IF exhibited exceptional performance in both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), demonstrating low overpotentials of 218 and 127 mV at 100 mA cm–2 in alkaline media, respectively. Furthermore, the water electrolyzer based on Ni2P/CoP/FeP4/IF bifunctional catalyst requires only 1.50 and 2.05 V to reach 10 and 500 mA cm–2, respectively, indicating its potential for large-scale hydrogen production. Comprehensive ex situ characterizations and in situ Raman spectra reveal that Ni2P/CoP/FeP4/IF undergoes rapid reconstruction during the OER to form the corresponding (oxy) hydroxide species, which serve as the real active sites. Furthermore, density functional theory calculations clarified that during the HER process, H2O is adsorbed at the Fe site of Ni2P/CoP/FeP4/IF for hydrolysis, with the resultant H* adsorbed at the Ni site for desorption. Introducing CoP promoted water adsorption and increased the HER activity of the catalyst. Hence, this study offers a pathway for designing highly efficient catalysts that leverage the interface effects.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.