Simulating vertical distribution of normalized leaf biomass for individual Moso bamboos under intensive management

Daodao Pan , Xiaojun Xu , Danna Chen , Dejin Dong
{"title":"Simulating vertical distribution of normalized leaf biomass for individual Moso bamboos under intensive management","authors":"Daodao Pan ,&nbsp;Xiaojun Xu ,&nbsp;Danna Chen ,&nbsp;Dejin Dong","doi":"10.1016/j.bamboo.2024.100097","DOIUrl":null,"url":null,"abstract":"<div><p>Leaf biomass is a crucial parameter that influences forest growth and carbon exchange between ecosystems and the atmosphere. A clear understanding of the vertical distribution of leaf biomass is essential for accurate carbon sequestration estimations in Moso bamboo. We collected data on leaf biomass from each crown layer and the structural characteristics of 54 individual Moso bamboo plants. We then simulated the vertical distribution of normalized upward cumulative leaf biomass (CLBn) using three power functions. The first model (Model 1) estimates CLBn using unique and unadjustable parameters (<em>a</em> and <em>b</em>) of the power function. In the second model (Model 2), parameter ‘<em>a</em>’ was fixed at 1, and parameter ‘<em>b</em>’ was fitted for all samples. In the third model (Model 3), parameter <em>b</em> was adjusted based on the structural characteristics of each bamboo. Model 3 demonstrated the highest accuracy in estimating CLBn and normalized leaf biomass (LBn) in each layer, with RMSEr values of 20.34 % and 36.85 % for CLBn and LBn, respectively. When compared with Model 1 and Model 2, Model 3 reduced RMSEr by 12.27 % and 6.88 % for CLBn and 21.13 % and 10.49 % for LBn, respectively. However, uncertainty remained significant in low LBn estimates from Model 3. Variations in the vertical distribution of CLBn in individual bamboo plants were primarily explained by crown length, height to the lowest living branch, and age. This study proposes a viable method for elucidating the variation in CLBn among individual bamboo plants.</p></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":"8 ","pages":"Article 100097"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773139124000429/pdfft?md5=373882df5c0f857354984a02d0e4461f&pid=1-s2.0-S2773139124000429-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773139124000429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Leaf biomass is a crucial parameter that influences forest growth and carbon exchange between ecosystems and the atmosphere. A clear understanding of the vertical distribution of leaf biomass is essential for accurate carbon sequestration estimations in Moso bamboo. We collected data on leaf biomass from each crown layer and the structural characteristics of 54 individual Moso bamboo plants. We then simulated the vertical distribution of normalized upward cumulative leaf biomass (CLBn) using three power functions. The first model (Model 1) estimates CLBn using unique and unadjustable parameters (a and b) of the power function. In the second model (Model 2), parameter ‘a’ was fixed at 1, and parameter ‘b’ was fitted for all samples. In the third model (Model 3), parameter b was adjusted based on the structural characteristics of each bamboo. Model 3 demonstrated the highest accuracy in estimating CLBn and normalized leaf biomass (LBn) in each layer, with RMSEr values of 20.34 % and 36.85 % for CLBn and LBn, respectively. When compared with Model 1 and Model 2, Model 3 reduced RMSEr by 12.27 % and 6.88 % for CLBn and 21.13 % and 10.49 % for LBn, respectively. However, uncertainty remained significant in low LBn estimates from Model 3. Variations in the vertical distribution of CLBn in individual bamboo plants were primarily explained by crown length, height to the lowest living branch, and age. This study proposes a viable method for elucidating the variation in CLBn among individual bamboo plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟密集管理下毛竹个体归一化叶片生物量的垂直分布
叶片生物量是影响森林生长以及生态系统与大气之间碳交换的重要参数。清楚地了解叶片生物量的垂直分布对于准确估算毛竹的固碳量至关重要。我们收集了 54 株毛竹树冠各层的叶片生物量数据和结构特征。然后,我们用三个幂函数模拟了归一化向上累积叶片生物量(CLBn)的垂直分布。第一个模型(模型 1)使用幂函数的唯一且不可调整的参数(a 和 b)来估计 CLBn。在第二个模型(模型 2)中,参数 "a "固定为 1,参数 "b "适用于所有样本。在第三个模型(模型 3)中,参数 b 根据每种竹子的结构特征进行调整。模型 3 在估算各层竹叶生物量(CLBn)和归一化竹叶生物量(LBn)方面表现出最高的准确性,CLBn 和 LBn 的 RMSEr 值分别为 20.34 % 和 36.85 %。与模型 1 和模型 2 相比,模型 3 使 CLBn 和 LBn 的 RMSEr 值分别降低了 12.27 % 和 6.88 %,使 CLBn 和 LBn 的 RMSEr 值分别降低了 21.13 % 和 10.49 %。然而,模型 3 对低 LBn 估计值的不确定性仍然很大。单株竹子 CLBn 垂直分布的变化主要由冠长、最低活枝高度和年龄解释。这项研究为阐明单株竹子的CLBn变化提出了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Physico-mechanical properties and decay fungi resistance of Dendrocalamus asper and Bambusa spinosa thermally modified in spent engine oil medium Natural geometrical variations of Italian Phyllostachys edulis bamboo culms for construction purposes Current and future habitat suitability modelling of Bambusa teres outside forest areas in Nepal under climate change scenarios Moisture ageing effects on the mechanical performance of eco-friendly sandwich panels made of aluminium skins, bamboo ring core and bio-based adhesives A novel dataset for green bamboo compressive strength analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1