Abdullah Coskun , F. Sibel Salman , Amirreza Pashapour
{"title":"Relief item inventory planning under centralized and decentralized bilateral cooperation and uncertain transshipment quantities","authors":"Abdullah Coskun , F. Sibel Salman , Amirreza Pashapour","doi":"10.1016/j.seps.2024.101991","DOIUrl":null,"url":null,"abstract":"<div><p>Pre-positioning relief inventory ensures timely delivery of in-kind aid after a catastrophe. Tragic disasters like major earthquakes are rare and unpredictable; therefore, stockpiled items may not be used. To avoid over-stocking and reduce shortage risk, the cooperation of two humanitarian agencies in supporting each other in case of shortages is suggested in the literature. In this study, we utilize newsvendor-based quantitative models to optimize the pre-disaster stocking decisions of agencies under centralized and decentralized cooperation mechanisms. In the former, both agencies jointly determine their inventory levels to maximize their combined benefits of relief operations, whereas, in the latter, each agency establishes its stocking level in isolation via a game theoretic approach. In both systems, the two agencies agree to transship their excessive items to the other party if needed. In this regard, we investigate the situation where only a portion of the transshipped items, denoted as the reliability factor, can be received and effectively utilized at the destination due to the chaotic nature of the disaster. Considering a deterministic reliability factor, we obtain the singular optimal inventory levels in the centralized system and identify the unique Nash Equilibrium in the decentralized system. Subsequently, we formulate a two-stage stochastic program, considering a random reliability factor for both cooperation systems. The study concludes by offering a range of managerial insights. Our analyses quantify the sub-optimality resulting from decentralized decision-making across diverse parameter settings using the concept of the price of anarchy. The findings highlight that centralized cooperation becomes particularly advisable when the average demand within either agency is high, the transshipment process is secure (i.e., the reliability factor is high), and transshipment costs remain low.</p></div>","PeriodicalId":22033,"journal":{"name":"Socio-economic Planning Sciences","volume":"95 ","pages":"Article 101991"},"PeriodicalIF":6.2000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Socio-economic Planning Sciences","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038012124001903","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Pre-positioning relief inventory ensures timely delivery of in-kind aid after a catastrophe. Tragic disasters like major earthquakes are rare and unpredictable; therefore, stockpiled items may not be used. To avoid over-stocking and reduce shortage risk, the cooperation of two humanitarian agencies in supporting each other in case of shortages is suggested in the literature. In this study, we utilize newsvendor-based quantitative models to optimize the pre-disaster stocking decisions of agencies under centralized and decentralized cooperation mechanisms. In the former, both agencies jointly determine their inventory levels to maximize their combined benefits of relief operations, whereas, in the latter, each agency establishes its stocking level in isolation via a game theoretic approach. In both systems, the two agencies agree to transship their excessive items to the other party if needed. In this regard, we investigate the situation where only a portion of the transshipped items, denoted as the reliability factor, can be received and effectively utilized at the destination due to the chaotic nature of the disaster. Considering a deterministic reliability factor, we obtain the singular optimal inventory levels in the centralized system and identify the unique Nash Equilibrium in the decentralized system. Subsequently, we formulate a two-stage stochastic program, considering a random reliability factor for both cooperation systems. The study concludes by offering a range of managerial insights. Our analyses quantify the sub-optimality resulting from decentralized decision-making across diverse parameter settings using the concept of the price of anarchy. The findings highlight that centralized cooperation becomes particularly advisable when the average demand within either agency is high, the transshipment process is secure (i.e., the reliability factor is high), and transshipment costs remain low.
期刊介绍:
Studies directed toward the more effective utilization of existing resources, e.g. mathematical programming models of health care delivery systems with relevance to more effective program design; systems analysis of fire outbreaks and its relevance to the location of fire stations; statistical analysis of the efficiency of a developing country economy or industry.
Studies relating to the interaction of various segments of society and technology, e.g. the effects of government health policies on the utilization and design of hospital facilities; the relationship between housing density and the demands on public transportation or other service facilities: patterns and implications of urban development and air or water pollution.
Studies devoted to the anticipations of and response to future needs for social, health and other human services, e.g. the relationship between industrial growth and the development of educational resources in affected areas; investigation of future demands for material and child health resources in a developing country; design of effective recycling in an urban setting.