Seungyong Han , Mengmeng Chu , Duy Phong Pham , Suresh Kumar Dhungel , Junsin Yi
{"title":"Comparison of different approaches to texturing monocrystalline silicon wafers for solar cell applications","authors":"Seungyong Han , Mengmeng Chu , Duy Phong Pham , Suresh Kumar Dhungel , Junsin Yi","doi":"10.1016/j.susc.2024.122540","DOIUrl":null,"url":null,"abstract":"<div><p>Texturing the surface of crystalline silicon wafers is a very important step in the production of high-efficiency solar cells. Alkaline texturing creates pyramids on the silicon surface, lowering surface reflectivity and improving light trapping in solar cells. This article provides a comparative evaluation of various wet texturing methods using alkaline solutions with or without additives commonly known as surfactants. One method uses sodium hydroxide (NaOH) and isopropyl alcohol (IPA) to create a surface with a height of about 4.5 μm by texturing for about 30 min, while the other method uses potassium hydroxide (KOH) and other additions known as additives. Texturing was performed using chemicals for only 15 min to create a surface shape with a height of approximately 3.5 μm. Additionally, the two solutions showed reflectance of 8.01 % or 12.1 % in 400–1100 nm, respectively. Both processes used alkaline etching at 80 °C for saw damage removal (SDR) before texturing. These processes have also been investigated in terms of removing potential organic contaminants from surfaces. Characterization techniques used throughout the investigation included optical microscopy, surface reflectance measurements, scanning electron microscopy (SEM), and electron dispersive spectroscopy (EDS). The purpose of this study is to confirm through experiments which texturing techniques are more suitable for mass production and to develop time- and cost-effective texturing techniques for industrial production of high-throughput, high-efficiency solar cells.</p></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"748 ","pages":"Article 122540"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824000918","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Texturing the surface of crystalline silicon wafers is a very important step in the production of high-efficiency solar cells. Alkaline texturing creates pyramids on the silicon surface, lowering surface reflectivity and improving light trapping in solar cells. This article provides a comparative evaluation of various wet texturing methods using alkaline solutions with or without additives commonly known as surfactants. One method uses sodium hydroxide (NaOH) and isopropyl alcohol (IPA) to create a surface with a height of about 4.5 μm by texturing for about 30 min, while the other method uses potassium hydroxide (KOH) and other additions known as additives. Texturing was performed using chemicals for only 15 min to create a surface shape with a height of approximately 3.5 μm. Additionally, the two solutions showed reflectance of 8.01 % or 12.1 % in 400–1100 nm, respectively. Both processes used alkaline etching at 80 °C for saw damage removal (SDR) before texturing. These processes have also been investigated in terms of removing potential organic contaminants from surfaces. Characterization techniques used throughout the investigation included optical microscopy, surface reflectance measurements, scanning electron microscopy (SEM), and electron dispersive spectroscopy (EDS). The purpose of this study is to confirm through experiments which texturing techniques are more suitable for mass production and to develop time- and cost-effective texturing techniques for industrial production of high-throughput, high-efficiency solar cells.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.