Sijia Wang , Liang He , Mengting Wang , Xingtong Guo , Xiangyun Qiu , Shoudong Xu , Petr Senin , Ting Bian , Tao Wei
{"title":"A modified PVDF-HFP/PMMA crosslinked co-polymer for high-performance all-solid-state lithium metal batteries","authors":"Sijia Wang , Liang He , Mengting Wang , Xingtong Guo , Xiangyun Qiu , Shoudong Xu , Petr Senin , Ting Bian , Tao Wei","doi":"10.1016/j.partic.2024.07.002","DOIUrl":null,"url":null,"abstract":"<div><p>For all-solid-state lithium batteries (ASSLBs), polymer-blended solid composite electrolytes (SCEs) have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the growth of lithium dendrites. In this work, SCEs based on PVDF-HFP/PMMA matrix containing MOFs (NH<sub>2</sub>-MIL-53(Al)) and LiTFSI were designed and synthesized employing an easy solution casting method. The synthesized samples were examined by XRD, SEM, EDS, and electrochemical tests. It was found that MPP-2 SCE not only has excellent ionic conductivity at 60 °C of 5.54 × 10<sup>−4</sup> S cm<sup>−1</sup>, but also exhibits superior interfacial compatibility in Li||Li symmetric batteries, which can constantly cycle for about 800 h at 0.1 mA cm<sup>−2</sup> with no short-circuiting. The assembled Li|MPP-2|LiFePO<sub>4</sub> cell exhibited a first discharge specific capacity of up to 157.1 mAh g<sup>−1</sup> at 60 °C and 0.2 C. This work may help to further advance the progress of ASSLBs in the future.</p></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"93 ","pages":"Pages 203-210"},"PeriodicalIF":4.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001287","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
For all-solid-state lithium batteries (ASSLBs), polymer-blended solid composite electrolytes (SCEs) have drawn wide interest owing to their significance in improving the interfacial solid-solid contacts and inhibiting the growth of lithium dendrites. In this work, SCEs based on PVDF-HFP/PMMA matrix containing MOFs (NH2-MIL-53(Al)) and LiTFSI were designed and synthesized employing an easy solution casting method. The synthesized samples were examined by XRD, SEM, EDS, and electrochemical tests. It was found that MPP-2 SCE not only has excellent ionic conductivity at 60 °C of 5.54 × 10−4 S cm−1, but also exhibits superior interfacial compatibility in Li||Li symmetric batteries, which can constantly cycle for about 800 h at 0.1 mA cm−2 with no short-circuiting. The assembled Li|MPP-2|LiFePO4 cell exhibited a first discharge specific capacity of up to 157.1 mAh g−1 at 60 °C and 0.2 C. This work may help to further advance the progress of ASSLBs in the future.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.