The water-salt migration law and deformation characteristics of coarse-grained saline soils have been extensively studied and illustrated. However, owing to the influence of the chemical composition and physical properties of the soils, coarse-grained soils are prone to localized soil absorption during mixing and compaction. This type of working condition of the existing localized fine sand accumulation layers is seldom discussed in the literature. In this study, water-salt migration and deformation of natural gradation specimens and specimens with localized fine sand accumulation layers in natural gradation were monitored and detected for the field fill conditions in an airport embankment project using self-designed test equipment based on nine freeze–thaw cycle physical simulation tests at environmental temperatures ranging from −30 °C to 25 °C. Under the freeze–thaw cycle, compared with the natural gradation, the specimens with localized fine sand accumulation layers had a higher influence on water and salt migration, which indicates that the depth range of drastic changes in water and salt increased by 80% and 84%, respectively. The cumulative deformation curves under the effects of natural gradation and localized fine sand accumulation exhibited similar trends. The difference between the deformation of the natural samples and samples with localized fine sand accumulation layers was 16% when the salt content of the upper part of the roadbed was 0.3%. In addition, the cumulative vertical settlement deformation of the specimens decreased with an increase in the salt content of the upper part of the roadbed and gradually transformed into vertical uplift deformation. The results of this study provide a basis for the selection of materials for airport roadbed backfill and their application in construction in seasonally frozen areas.