首页 > 最新文献

Cold Regions Science and Technology最新文献

英文 中文
Relationship of physical and mechanical properties of sea ice during the freeze-up season in Nansen Basin 南森盆地冻结期海冰物理和机械特性的关系
IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-28 DOI: 10.1016/j.coldregions.2024.104353
Sea-ice properties, such as porosity and strength, can have significant spatial variability at small scales. Quantifying this variability may give better estimates of the ice properties and their interrelation. Additionally, correlating in situ ice strength measurements and ice properties, including porosity, may improve understanding of the factors influencing ice strength. This paper presents measurements of sea-ice properties and strength on first- and second-year sea ice during the GoNorth expedition to the Arctic Ocean in October 2022. In situ borehole indentation measurements were co-located with measurements of physical properties, and the meter-scale variability of the physical properties and strength was investigated. Bulk density values found from hydrostatic weighing were 911 ± 5 kg m−3 for first-year and 904 ± 5 kg m−3 for second-year ice, with significantly less uncertainty than density values from the mass/volume method or from freeboard/draft measurements. The second-year ice was relatively saline, with a mean bulk salinity of 3.1 ± 0.5, and the ice was desalinated in the upper and lower 0.2 m. The bulk gas fraction in the second-year ice was 2.5 ± 0.5 %, similar to the first-year ice gas fraction of 2.8 ± 0.5 %. Gas fractions up to 6.5 % were observed in the second-year ice without any obvious correlation with the brine fraction. The second-year ice had larger spatial variability in thickness, porosity, grain structure, and ice strength compared to the first-year ice. Variability in bulk density and gas fraction were similar for first- and second-year ice, as the larger variability was mostly seen below the upper 0.4 m of the second-year ice. The borehole strength was 26.0 ± 4.4 MPa for first-year and 41.0 ± 12.1 MPa for second-year ice. There were indications that the total microporosity at indentation depth was related to in situ borehole strength (R2 = 0.82), and that brine volume was the most influential parameter. The relative variability in the local microporosity in the second-year ice (0.43) was greater than the relative variability in borehole strength (0.27), while the opposite was true for the first-year ice (0.09 versus 0.17).
海冰特性,如孔隙度和强度,在小尺度上会有很大的空间变化。量化这种变异性可以更好地估计冰的特性及其相互关系。此外,将原位冰强度测量结果与包括孔隙度在内的冰属性联系起来,可以加深对影响冰强度的因素的理解。本文介绍了 2022 年 10 月在北冰洋 GoNorth 考察期间对第一年和第二年海冰的特性和强度进行的测量。现场钻孔压痕测量与物理性质测量同时进行,并对物理性质和强度的米级变化进行了研究。通过静力学称重发现,第一年冰的体积密度值为 911 ± 5 kg m-3,第二年冰的体积密度值为 904 ± 5 kg m-3,其不确定性明显小于质量/体积法或自由板/透气度测量法得出的密度值。第二年冰的盐度相对较高,平均体积盐度为 3.1 ± 0.5,冰的上部和下部 0.2 米处脱盐。在第二年冰层中观测到的气体分数高达 6.5%,但与盐水分数没有明显的相关性。与第一年冰相比,第二年冰在厚度、孔隙度、晶粒结构和冰强度方面的空间变化较大。第一年和第二年冰的容积密度和气体组分的变异性相似,因为较大的变异性主要出现在第二年冰的上层 0.4 米以下。第一年冰的钻孔强度为 26.0 ± 4.4 兆帕,第二年冰的钻孔强度为 41.0 ± 12.1 兆帕。有迹象表明,压痕深度的总微孔与现场钻孔强度有关(R2 = 0.82),而盐水体积是影响最大的参数。二年冰局部微孔的相对变异性(0.43)大于钻孔强度的相对变异性(0.27),而一年冰的情况正好相反(0.09 对 0.17)。
{"title":"Relationship of physical and mechanical properties of sea ice during the freeze-up season in Nansen Basin","authors":"","doi":"10.1016/j.coldregions.2024.104353","DOIUrl":"10.1016/j.coldregions.2024.104353","url":null,"abstract":"<div><div>Sea-ice properties, such as porosity and strength, can have significant spatial variability at small scales. Quantifying this variability may give better estimates of the ice properties and their interrelation. Additionally, correlating in situ ice strength measurements and ice properties, including porosity, may improve understanding of the factors influencing ice strength. This paper presents measurements of sea-ice properties and strength on first- and second-year sea ice during the GoNorth expedition to the Arctic Ocean in October 2022. In situ borehole indentation measurements were co-located with measurements of physical properties, and the meter-scale variability of the physical properties and strength was investigated. Bulk density values found from hydrostatic weighing were 911 ± 5 kg m<sup>−3</sup> for first-year and 904 ± 5 kg m<sup>−3</sup> for second-year ice, with significantly less uncertainty than density values from the mass/volume method or from freeboard/draft measurements. The second-year ice was relatively saline, with a mean bulk salinity of 3.1 ± 0.5, and the ice was desalinated in the upper and lower 0.2 m. The bulk gas fraction in the second-year ice was 2.5 ± 0.5 %, similar to the first-year ice gas fraction of 2.8 ± 0.5 %. Gas fractions up to 6.5 % were observed in the second-year ice without any obvious correlation with the brine fraction. The second-year ice had larger spatial variability in thickness, porosity, grain structure, and ice strength compared to the first-year ice. Variability in bulk density and gas fraction were similar for first- and second-year ice, as the larger variability was mostly seen below the upper 0.4 m of the second-year ice. The borehole strength was 26.0 ± 4.4 MPa for first-year and 41.0 ± 12.1 MPa for second-year ice. There were indications that the total microporosity at indentation depth was related to in situ borehole strength (<span><math><msup><mi>R</mi><mn>2</mn></msup></math></span> = 0.82), and that brine volume was the most influential parameter. The relative variability in the local microporosity in the second-year ice (0.43) was greater than the relative variability in borehole strength (0.27), while the opposite was true for the first-year ice (0.09 versus 0.17).</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prototype observation and analysis of static ice pressure on reservoir piers in cold regions 寒冷地区水库码头静冰压力的原型观测与分析
IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-28 DOI: 10.1016/j.coldregions.2024.104352
Static ice pressure is an important factor threatening the structural safety of bridges built in cold region reservoirs. Bridge piers will be subjected to high static ice pressure during the conversion of water to ice, which may cause deformation or even failure of piers. To investigate the spatial and temporal distribution of static ice pressure, this study carried out a two-year field observation experiment on the ice sheet of the Xilamulun Reservoir in Inner Monggol, China. A novel ice pressure panel was designed to measure static ice pressure in this work. Meanwhile, the air temperature, ice temperature, and ice thickness were recorded to analyze the influencing factors of static ice pressure. The results show that the new ice pressure panel provided an accurate measurement of the varying ice pressure and its vertical distribution within the ice sheet. The ice thickness growth factor was calculated based on the Freezing Ice Degree Day model, and snowfall was the critical parameter affecting the ice thickness growth factor. The new formulas for calculating the temperature distribution within the ice sheet were presented, in which critical parameters were determined based on measured data. The calculated ice pressures matched well with the observed values, which indicates the validity of the presented formulas. The maximum ice pressure on piers occurred at 1/3 to 1/2 of the ice thickness below the ice surface and gradually moved downward as the ice thickness increased. Moreover, the ice pressure is not only affected by the air temperature but also by the cracking state of the ice sheet, constraints, sunshine time, etc. This study can be used to predict ice sheet growth, ice pressure, and ice temperature distribution and contribute to the ice-resistant design of bridge piers in cold region reservoirs.
静冰压力是威胁寒冷地区水库桥梁结构安全的一个重要因素。桥墩在水冰转换过程中会承受较高的静冰压力,可能导致桥墩变形甚至失效。为了研究静冰压力的时空分布,本研究在中国内蒙古锡林郭勒盟西拉木伦水库的冰层上进行了为期两年的野外观测实验。本研究设计了一种新型冰压板来测量静态冰压。同时,记录了气温、冰温和冰厚,分析了静态冰压的影响因素。结果表明,新型冰压板可准确测量冰层内的变化冰压及其垂直分布。冰层厚度增长因子是根据冻冰度日模型计算得出的,降雪量是影响冰层厚度增长因子的关键参数。提出了计算冰原内部温度分布的新公式,其中关键参数是根据测量数据确定的。计算得出的冰压力与观测值非常吻合,这表明所提出的公式是正确的。桥墩上的最大冰压力出现在冰面以下 1/3 至 1/2 的冰厚度处,并随着冰厚度的增加逐渐向下移动。此外,冰压不仅受气温影响,还受冰层开裂状态、制约因素、日照时间等因素的影响。这项研究可用于预测冰层生长、冰压和冰温分布,有助于寒冷地区水库桥墩的抗冰设计。
{"title":"Prototype observation and analysis of static ice pressure on reservoir piers in cold regions","authors":"","doi":"10.1016/j.coldregions.2024.104352","DOIUrl":"10.1016/j.coldregions.2024.104352","url":null,"abstract":"<div><div>Static ice pressure is an important factor threatening the structural safety of bridges built in cold region reservoirs. Bridge piers will be subjected to high static ice pressure during the conversion of water to ice, which may cause deformation or even failure of piers. To investigate the spatial and temporal distribution of static ice pressure, this study carried out a two-year field observation experiment on the ice sheet of the Xilamulun Reservoir in Inner Monggol, China. A novel ice pressure panel was designed to measure static ice pressure in this work. Meanwhile, the air temperature, ice temperature, and ice thickness were recorded to analyze the influencing factors of static ice pressure. The results show that the new ice pressure panel provided an accurate measurement of the varying ice pressure and its vertical distribution within the ice sheet. The ice thickness growth factor was calculated based on the Freezing Ice Degree Day model, and snowfall was the critical parameter affecting the ice thickness growth factor. The new formulas for calculating the temperature distribution within the ice sheet were presented, in which critical parameters were determined based on measured data. The calculated ice pressures matched well with the observed values, which indicates the validity of the presented formulas. The maximum ice pressure on piers occurred at 1/3 to 1/2 of the ice thickness below the ice surface and gradually moved downward as the ice thickness increased. Moreover, the ice pressure is not only affected by the air temperature but also by the cracking state of the ice sheet, constraints, sunshine time, etc. This study can be used to predict ice sheet growth, ice pressure, and ice temperature distribution and contribute to the ice-resistant design of bridge piers in cold region reservoirs.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoscopic shear evolution characteristics of frozen soil-concrete interface 冻土-混凝土界面的介观剪切演变特征
IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-22 DOI: 10.1016/j.coldregions.2024.104342
The mechanical properties of frozen-concrete interfaces affect the stability and durability of engineering structures in cold regions. To investigate these properties, laboratory tests and numerical simulations were conducted to study the mesoscopic evolution of the shear stress-displacement relationship and the shearing process at the interface. The direct shear tests were performed at different environmental temperatures (−2 °C, −5 °C, and −10 °C) and normal stresses (100 kPa, 200 kPa, and 300 kPa) on the frozen soil-concrete interface, and Particle Flow Code (PFC) model of direct shear was developed. The mesoscopic parameters (particle displacement, rotation, force chain, stress, coordination number, porosity, fabric, etc.) of the interface during shearing were simulated using the PFC model. Moreover, the relationship among the interface temperature, cohesion, and friction coefficient was determined based on experimental data, and the accuracy of the PFC model was verified using previous experimental data. The results of the PFC shear model aligned well with those of the laboratory test, and the formation of shear bands was simulated well. The displacement of the soil particles on the upper layer outside the shear zone was uniform, and the direction was the same, whereas the particles inside the shear zone showed significant differences in the dislocation and rotation of the soil particles. The force chain, stress field, coordination number, and porosity were similar in the shear process and showed a concentrated distribution in the opposite direction of the shear motion, which reflected the consistency of the microcosmic response of the particles under the action of macroscopic external forces. The regression equations for the temperature, cohesion, and friction coefficient in this study can be used to simulate the shear behavior of frozen soil-concrete interfaces under different temperatures and normal stresses.
受冻混凝土界面的力学性能影响着寒冷地区工程结构的稳定性和耐久性。为了研究这些特性,我们进行了实验室试验和数值模拟,以研究剪应力-位移关系的中观演变和界面的剪切过程。在不同的环境温度(-2 °C、-5 °C 和 -10 °C)和法向应力(100 kPa、200 kPa 和 300 kPa)下,对冻土-混凝土界面进行了直接剪切试验,并建立了直接剪切的粒子流代码(PFC)模型。利用 PFC 模型模拟了剪切过程中界面的中观参数(颗粒位移、旋转、力链、应力、配位数、孔隙度、结构等)。此外,还根据实验数据确定了界面温度、内聚力和摩擦系数之间的关系,并利用先前的实验数据验证了 PFC 模型的准确性。PFC 剪切模型的结果与实验室试验的结果吻合,很好地模拟了剪切带的形成。剪切带外上层土体颗粒位移均匀,方向一致,而剪切带内土体颗粒位错和旋转差异明显。在剪切过程中,力链、应力场、配位数、孔隙度等均相似,并呈现出与剪切运动方向相反的集中分布,反映了颗粒在宏观外力作用下微观响应的一致性。本研究中的温度、内聚力和摩擦系数回归方程可用于模拟冻土-混凝土界面在不同温度和法向应力下的剪切行为。
{"title":"Mesoscopic shear evolution characteristics of frozen soil-concrete interface","authors":"","doi":"10.1016/j.coldregions.2024.104342","DOIUrl":"10.1016/j.coldregions.2024.104342","url":null,"abstract":"<div><div>The mechanical properties of frozen-concrete interfaces affect the stability and durability of engineering structures in cold regions. To investigate these properties, laboratory tests and numerical simulations were conducted to study the mesoscopic evolution of the shear stress-displacement relationship and the shearing process at the interface. The direct shear tests were performed at different environmental temperatures (−2 °C, −5 °C, and −10 °C) and normal stresses (100 kPa, 200 kPa, and 300 kPa) on the frozen soil-concrete interface, and Particle Flow Code (PFC) model of direct shear was developed. The mesoscopic parameters (particle displacement, rotation, force chain, stress, coordination number, porosity, fabric, etc.) of the interface during shearing were simulated using the PFC model. Moreover, the relationship among the interface temperature, cohesion, and friction coefficient was determined based on experimental data, and the accuracy of the PFC model was verified using previous experimental data. The results of the PFC shear model aligned well with those of the laboratory test, and the formation of shear bands was simulated well. The displacement of the soil particles on the upper layer outside the shear zone was uniform, and the direction was the same, whereas the particles inside the shear zone showed significant differences in the dislocation and rotation of the soil particles. The force chain, stress field, coordination number, and porosity were similar in the shear process and showed a concentrated distribution in the opposite direction of the shear motion, which reflected the consistency of the microcosmic response of the particles under the action of macroscopic external forces. The regression equations for the temperature, cohesion, and friction coefficient in this study can be used to simulate the shear behavior of frozen soil-concrete interfaces under different temperatures and normal stresses.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New insights into icephobic material assessment: Introducing the human motion–inspired automated apparatus (HMA) 疏冰材料评估的新见解:人体运动启发自动仪器(HMA)介绍
IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-22 DOI: 10.1016/j.coldregions.2024.104351
The impact of winter on exposed structures and transportation poses significant dangers and costs to various industries, particularly the transportation sector. Icephobic surfaces are currently being developed to reduce winter-related impacts. Creating such surfaces requires considering various factors, including reducing and preventing ice accumulation, significantly decreasing ice adhesion, and/or delaying water solidification. Although established methods such as centrifugal force and push-off tests exist for measuring ice adhesion, the results may not always correlate or offer the needed information for specific applications. To better assess icephobic properties, we have developed a novel device called the human motion–inspired automated apparatus (HMA) that mimics manual de-icing performed by humans in a scraping mode. The primary objective of the HMA is to emulate human removal of ice-covered surfaces, providing a more realistic evaluation of icephobic properties according to the ease of ice removal. This apparatus aims to revolutionize icephobic material assessment by offering improved accuracy, repeatability, and versatility in testing. We developed a unique procedure using low icing conditions, which are challenging to evaluate using conventional methods, and assessed four surfaces: aluminum as a reference, an epoxy-based hydrophilic coating, a hydrophobic silicone elastomer coating, and a hydrophobic epoxy–silicone coating. Our HMA characterizes surfaces according to several crucial parameters, including the normal force required to initiate ice scraping removal, the maximum force achieved, the angle of attack, and the equivalent force, all consistent with validation tests conducted by humans. Among the evaluated surfaces, the silicone coating required the lowest normal force, and the epoxy–silicone coating had the lowest maximum and equivalent forces. Our HMA results align well with validation tests conducted by humans. The HMA enables evaluating various critical icing conditions and promises a broad range of applications in research and development.
冬季对裸露结构和运输的影响给各行各业,尤其是运输业带来了巨大的危险和成本。目前正在开发疏冰表面,以减少与冬季有关的影响。创建此类表面需要考虑各种因素,包括减少和防止冰的积累、显著降低冰的附着力和/或延迟水的凝固。虽然已有离心力和推脱试验等测量冰附着力的成熟方法,但其结果并不总是相关联,也不能提供特定应用所需的信息。为了更好地评估憎冰特性,我们开发了一种名为 "人体运动启发自动装置(HMA)"的新型装置,该装置可模仿刮冰模式下的人工除冰。HMA 的主要目的是模拟人类清除冰雪覆盖表面的过程,根据除冰的难易程度对疏冰特性进行更真实的评估。该仪器旨在通过提高测试的准确性、可重复性和多功能性,彻底改变疏冰材料评估方法。我们利用传统方法难以评估的低结冰条件开发了一种独特的程序,并对四种表面进行了评估:作为参照的铝、环氧基亲水涂层、疏水性硅弹性体涂层和疏水性环氧硅涂层。我们的 HMA 根据几个关键参数对表面进行表征,包括启动刮冰去除所需的法向力、达到的最大力、攻击角度和等效力,所有这些参数都与人类进行的验证测试一致。在所评估的表面中,硅树脂涂层所需的法向力最小,环氧硅树脂涂层的最大力和等效应力最小。我们的 HMA 结果与人类进行的验证测试非常吻合。HMA 可以评估各种关键结冰条件,有望在研发领域得到广泛应用。
{"title":"New insights into icephobic material assessment: Introducing the human motion–inspired automated apparatus (HMA)","authors":"","doi":"10.1016/j.coldregions.2024.104351","DOIUrl":"10.1016/j.coldregions.2024.104351","url":null,"abstract":"<div><div>The impact of winter on exposed structures and transportation poses significant dangers and costs to various industries, particularly the transportation sector. Icephobic surfaces are currently being developed to reduce winter-related impacts. Creating such surfaces requires considering various factors, including reducing and preventing ice accumulation, significantly decreasing ice adhesion, and/or delaying water solidification. Although established methods such as centrifugal force and push-off tests exist for measuring ice adhesion, the results may not always correlate or offer the needed information for specific applications. To better assess icephobic properties, we have developed a novel device called the human motion–inspired automated apparatus (HMA) that mimics manual de-icing performed by humans in a scraping mode. The primary objective of the HMA is to emulate human removal of ice-covered surfaces, providing a more realistic evaluation of icephobic properties according to the ease of ice removal. This apparatus aims to revolutionize icephobic material assessment by offering improved accuracy, repeatability, and versatility in testing. We developed a unique procedure using low icing conditions, which are challenging to evaluate using conventional methods, and assessed four surfaces: aluminum as a reference, an epoxy-based hydrophilic coating, a hydrophobic silicone elastomer coating, and a hydrophobic epoxy–silicone coating. Our HMA characterizes surfaces according to several crucial parameters, including the normal force required to initiate ice scraping removal, the maximum force achieved, the angle of attack, and the equivalent force, all consistent with validation tests conducted by humans. Among the evaluated surfaces, the silicone coating required the lowest normal force, and the epoxy–silicone coating had the lowest maximum and equivalent forces. Our HMA results align well with validation tests conducted by humans. The HMA enables evaluating various critical icing conditions and promises a broad range of applications in research and development.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing artificial permafrost table predictions using integrated climate and ground temperature data: A case study from the Qinghai-Xizang highway 利用综合气候和地温数据加强人工冻土层表预测:青藏公路案例研究
IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-18 DOI: 10.1016/j.coldregions.2024.104341
The complexities of permafrost changes, driven by climate warming and engineering activities, coupled with challenges in data acquisition, make it crucial and challenging to accurately predict the artificial permafrost table, particularly for subgrades in high-temperature unstable permafrost regions. To address this, this study developed a hybrid machine learning model (RF-LSTM-XGBoost) for permafrost table prediction. By analyzing climate change and ground temperature data from various positions and depths along the subgrade in the Tuotuo River section of the Qinghai-Xizang Highway, the Spearman correlation coefficient method was initially used to determine the important influencing factors. Random Forest (RF), Long Short-Term Memory Neural Network (LSTM), and Extreme Gradient Boosting (XGBoost) models were used to predict the artificial permafrost table, and grid search and cross-validation methods were employed to optimize the hyperparameters of each model. A linear weighted combination method based on the minimum cumulative absolute error was utilized to merge the models, and its performance was compared with the individual RF, LSTM, and XGBoost models. Subsequently, the feature importance of the variables in the machine learning model was analyzed. The results indicated a strong correlation between artificial permafrost table changes and factors such as daily average atmospheric temperature, subgrade surface ground temperature, and subgrade surface ground heat flux during the freezing-thawing cycle. The combined model highlighted daily atmospheric temperature as the most influential predictor, followed by ground heat flux, with the surface ground temperature being less impactful. The combined model demonstrated improved predictive accuracy, with MSE, MAPE, RMSE, MAE, and R2 values of 0.003, 0.052, 0.0085, 0.029, and 0.989, respectively, surpassing those of individual models. This model offers a rapid, accurate, and reliable approach for permafrost table prediction, advancing subgrade stability research in challenging permafrost environments.
在气候变暖和工程活动的驱动下,冻土层的变化十分复杂,再加上数据采集方面的挑战,因此准确预测人工冻土层表,尤其是高温不稳定冻土地区的下层冻土层表至关重要且极具挑战性。为此,本研究开发了一种用于冻土层预测的混合机器学习模型(RF-LSTM-XGBoost)。通过分析青藏公路沱沱河段路基沿线不同位置和深度的气候变化和地温数据,初步采用斯皮尔曼相关系数法确定了重要的影响因素。采用随机森林(RF)、长短期记忆神经网络(LSTM)和极梯度提升(XGBoost)模型预测人工冻土层表层,并采用网格搜索法和交叉验证法优化各模型的超参数。利用基于最小累积绝对误差的线性加权组合方法合并模型,并将其性能与 RF、LSTM 和 XGBoost 模型进行比较。随后,分析了机器学习模型中变量特征的重要性。结果表明,在冻融循环期间,人工冻土层表层变化与日平均大气温度、基层表层地温和基层表层地热通量等因素之间存在很强的相关性。综合模型突出显示,日大气温度是影响最大的预测因素,其次是地表热通量,而地表地温的影响较小。组合模型提高了预测精度,其 MSE、MAPE、RMSE、MAE 和 R2 值分别为 0.003、0.052、0.0085、0.029 和 0.989,超过了单个模型。该模型为冻土层表层预测提供了一种快速、准确、可靠的方法,推动了具有挑战性的冻土环境中的路基稳定性研究。
{"title":"Enhancing artificial permafrost table predictions using integrated climate and ground temperature data: A case study from the Qinghai-Xizang highway","authors":"","doi":"10.1016/j.coldregions.2024.104341","DOIUrl":"10.1016/j.coldregions.2024.104341","url":null,"abstract":"<div><div>The complexities of permafrost changes, driven by climate warming and engineering activities, coupled with challenges in data acquisition, make it crucial and challenging to accurately predict the artificial permafrost table, particularly for subgrades in high-temperature unstable permafrost regions. To address this, this study developed a hybrid machine learning model (RF-LSTM-XGBoost) for permafrost table prediction. By analyzing climate change and ground temperature data from various positions and depths along the subgrade in the Tuotuo River section of the Qinghai-Xizang Highway, the Spearman correlation coefficient method was initially used to determine the important influencing factors. Random Forest (RF), Long Short-Term Memory Neural Network (LSTM), and Extreme Gradient Boosting (XGBoost) models were used to predict the artificial permafrost table, and grid search and cross-validation methods were employed to optimize the hyperparameters of each model. A linear weighted combination method based on the minimum cumulative absolute error was utilized to merge the models, and its performance was compared with the individual RF, LSTM, and XGBoost models. Subsequently, the feature importance of the variables in the machine learning model was analyzed. The results indicated a strong correlation between artificial permafrost table changes and factors such as daily average atmospheric temperature, subgrade surface ground temperature, and subgrade surface ground heat flux during the freezing-thawing cycle. The combined model highlighted daily atmospheric temperature as the most influential predictor, followed by ground heat flux, with the surface ground temperature being less impactful. The combined model demonstrated improved predictive accuracy, with MSE, MAPE, RMSE, MAE, and R<sup>2</sup> values of 0.003, 0.052, 0.0085, 0.029, and 0.989, respectively, surpassing those of individual models. This model offers a rapid, accurate, and reliable approach for permafrost table prediction, advancing subgrade stability research in challenging permafrost environments.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model test investigation on heat and deformation behaviors of canal slopes with protective layers caused by freeze-thaw action 带有保护层的运河边坡在冻融作用下的受热和变形行为的模型试验研究
IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-05 DOI: 10.1016/j.coldregions.2024.104338
Frost damage is one of the main factors affecting the stability of canal slopes in cold regions. To alleviate the damage, laying protective layers during the construction process has become an indispensable measure. In this study, two slope models were constructed using polyester geotextiles (slope I) and composite geomembranes (slope II) as the protective layer. Additionally, the insulation board in the control group were laid on specific section to examine their anti-frost effect. The temperature, frozen depth, and frost deformations of slope models during the freeze-thaw process were recorded and analyzed. Results suggest that the temperature of slope II is relatively lower than that of slope I in the freezing process. The temperature reduction at all monitoring sections of slope II are larger than that of slope I. The slope I exhibits a significant decrease in maximum frozen depth and maximum frost deformation. In particular, the section with the maximum frost deformation is independent of the type of protective layer, which all occurs in the middle of the slopes. The maximum frost deformations of slope models are 33.60 mm and 37.69 mm, respectively after laying the polyester geotextiles and composite geomembranes. Therefore, the polyester geotextiles have more advantages in reducing frost deformation than composite geomembranes. Additionally, if the insulation board and polyester geotextiles are laid together inside the slope, the maximum frost deformation can be further reduced to 9.72 mm. This study will help in the design and construction of canal slopes in cold regions.
冻害是影响寒冷地区运河边坡稳定性的主要因素之一。为了减轻冻害,在施工过程中铺设保护层已成为一项不可或缺的措施。本研究使用聚酯土工织物(边坡 I)和复合土工膜(边坡 II)作为保护层,建造了两个边坡模型。此外,还在特定地段铺设了对照组的保温板,以检验其防冻效果。记录并分析了冻融过程中边坡模型的温度、冻结深度和霜冻变形。结果表明,在冻结过程中,斜坡 II 的温度相对低于斜坡 I。边坡 I 的最大冻结深度和最大冻胀变形均有显著下降。特别是,最大冻胀变形段与保护层类型无关,均出现在斜坡中部。在铺设聚酯土工织物和复合土工膜后,边坡模型的最大冻胀变形分别为 33.60 毫米和 37.69 毫米。因此,聚酯土工织物在减少冻害变形方面比复合土工膜更有优势。此外,如果将保温板和聚酯土工织物一起铺设在斜坡内,最大冻胀变形可进一步减小到 9.72 毫米。这项研究将有助于寒冷地区运河边坡的设计和施工。
{"title":"Model test investigation on heat and deformation behaviors of canal slopes with protective layers caused by freeze-thaw action","authors":"","doi":"10.1016/j.coldregions.2024.104338","DOIUrl":"10.1016/j.coldregions.2024.104338","url":null,"abstract":"<div><div>Frost damage is one of the main factors affecting the stability of canal slopes in cold regions. To alleviate the damage, laying protective layers during the construction process has become an indispensable measure. In this study, two slope models were constructed using polyester geotextiles (slope I) and composite geomembranes (slope II) as the protective layer. Additionally, the insulation board in the control group were laid on specific section to examine their anti-frost effect. The temperature, frozen depth, and frost deformations of slope models during the freeze-thaw process were recorded and analyzed. Results suggest that the temperature of slope II is relatively lower than that of slope I in the freezing process. The temperature reduction at all monitoring sections of slope II are larger than that of slope I. The slope I exhibits a significant decrease in maximum frozen depth and maximum frost deformation. In particular, the section with the maximum frost deformation is independent of the type of protective layer, which all occurs in the middle of the slopes. The maximum frost deformations of slope models are 33.60 mm and 37.69 mm, respectively after laying the polyester geotextiles and composite geomembranes. Therefore, the polyester geotextiles have more advantages in reducing frost deformation than composite geomembranes. Additionally, if the insulation board and polyester geotextiles are laid together inside the slope, the maximum frost deformation can be further reduced to 9.72 mm. This study will help in the design and construction of canal slopes in cold regions.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cutting speed and behaviors of ice using Yb-doped fiber laser 使用掺镱光纤激光器切割冰的速度和行为
IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-05 DOI: 10.1016/j.coldregions.2024.104335
The use of a laser to cut or drill ice has been proposed and demonstrated multiple times in previous decades as a novel, but never adopted, machining tool in glaciology and paleoclimate studies. However, with the rapid development of high power fiber-laser technology over the past few decades, it is timely to perform further studies using this new tool. An investigation is made herein on the cutting of ice using a Yb-doped fiber laser emitting at a wavelength of 1070 nm, the most extensively developed and highest power fiber laser technology, in pulsed and continuous-wave operation. Visible-light observations of clear tap water ice samples, moving at a constant velocity relative to a pulsed laser beam, demonstrate a linear relationship between the duration of a millisecond-range laser pulse and the depth of the meltwater-free cut formed in response. Thermal imaging of the irradiated face shows that peripheral heating trends linearly for pulse lengths greater than 5 ms. A comparison of pulse trains with a constant time-averaged power suggests that shorter pulses are advantageous in slot-cutting efficiency and in minimizing visible alterations in the surrounding ice. These results demonstrate the viability of powerful fiber-compatible lasers as a tool for ice sample retrieval and processing.
在过去的几十年中,使用激光切割或钻孔冰作为一种新颖的加工工具在冰川学和古气候研究中被多次提出和论证,但从未被采用。然而,随着高功率光纤激光技术在过去几十年的快速发展,现在是利用这种新工具开展进一步研究的时候了。本文对使用波长为 1070 纳米的掺镱光纤激光器切割冰层的情况进行了研究,该激光器是目前开发最广泛、功率最大的光纤激光器技术,可进行脉冲和连续波操作。对相对于脉冲激光束匀速运动的透明自来水冰样品进行的可见光观察表明,毫秒级激光脉冲的持续时间与响应形成的无融水切割深度之间存在线性关系。照射面的热成像显示,当脉冲长度大于 5 毫秒时,外围加热呈线性趋势。对具有恒定时间平均功率的脉冲序列进行的比较表明,较短的脉冲在切槽效率和最大限度地减少周围冰层的可见变化方面具有优势。这些结果表明,功能强大的光纤兼容激光器可作为冰样品回收和处理的工具。
{"title":"Cutting speed and behaviors of ice using Yb-doped fiber laser","authors":"","doi":"10.1016/j.coldregions.2024.104335","DOIUrl":"10.1016/j.coldregions.2024.104335","url":null,"abstract":"<div><div>The use of a laser to cut or drill ice has been proposed and demonstrated multiple times in previous decades as a novel, but never adopted, machining tool in glaciology and paleoclimate studies. However, with the rapid development of high power fiber-laser technology over the past few decades, it is timely to perform further studies using this new tool. An investigation is made herein on the cutting of ice using a Yb-doped fiber laser emitting at a wavelength of 1070 nm, the most extensively developed and highest power fiber laser technology, in pulsed and continuous-wave operation. Visible-light observations of clear tap water ice samples, moving at a constant velocity relative to a pulsed laser beam, demonstrate a linear relationship between the duration of a millisecond-range laser pulse and the depth of the meltwater-free cut formed in response. Thermal imaging of the irradiated face shows that peripheral heating trends linearly for pulse lengths greater than 5 ms. A comparison of pulse trains with a constant time-averaged power suggests that shorter pulses are advantageous in slot-cutting efficiency and in minimizing visible alterations in the surrounding ice. These results demonstrate the viability of powerful fiber-compatible lasers as a tool for ice sample retrieval and processing.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effectiveness evaluation of cooling measures for express highway construction in permafrost regions based on GPR and ERT 基于 GPR 和 ERT 的冻土地区快速公路建设冷却措施效果评估
IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-03 DOI: 10.1016/j.coldregions.2024.104339
Global warming and human activities are accelerating the degradation of permafrost on the Qinghai-Tibet Plateau (QTP), leading to significant settlement and cracking issues in the local express highway infrastructures. In response, the Gonghe-Yushu Express Highway (GYE) on the east edge of the QTP incorporated extensive cooling measures during its construction to enhance embankment stability. Despite these efforts, field investigations have disclosed that embankment diseases persist across various sections, including those with implemented cooling measures. This study focuses on a specific test and demonstration section of the GYE, employing a suite of cooling measures to assess their engineering effectiveness. Utilizing a combination of multi-time ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) detection, alongside on-site disease investigations and temperature monitoring, this research comprehensively evaluates the efficacy of different cooling interventions. Findings indicate that although cooling measures generally curb permafrost degradation in areas with ice-rich and ice-saturated soils, they fall short in sections with massive ground ice. Of the six cooling measures examined in the demonstration section, ventilation duct embankments emerge as the most effective, whereas crushed-rock layer embankments rank as the least. The study further reveals that the combined use of XPS insulation boards and two-phase closed thermosyphons inadequately addresses the issue of central heat accumulation in broad-width express highways, reducing uneven settlement issues but aggravating longitudinal cracking. Comparative analysis of on-site surveys and monitoring data suggests that regular application of GPR and ERT techniques can proficiently assess the performance of cooling measures.
全球变暖和人类活动正在加速青藏高原(QTP)冻土层的退化,导致当地高速公路基础设施出现严重的沉降和开裂问题。为此,位于青藏高原东缘的共和至玉树高速公路(GYE)在建设过程中采取了大量降温措施,以增强路堤的稳定性。尽管做出了这些努力,但实地调查显示,不同路段的路堤病害依然存在,包括已采取降温措施的路段。本研究主要针对青羊河的一个特定试验和示范段,采用一系列冷却措施来评估其工程效果。这项研究结合使用了多时间探地雷达 (GPR) 和电阻率断层扫描 (ERT) 探测技术,以及现场疾病调查和温度监测,全面评估了不同冷却干预措施的效果。研究结果表明,虽然在富冰和冰饱和土壤地区,降温措施一般都能遏制冻土层退化,但在有大量地表冰的地段,降温措施就显得力不从心了。在示范区研究的六种降温措施中,通风管道堤坝最为有效,而碎石层堤坝的降温效果最差。研究进一步揭示,结合使用聚苯乙烯保温板和两相封闭式温水箱不足以解决宽幅快速公路的中心热量积聚问题,虽然减少了不均匀沉降问题,但却加剧了纵向开裂。对现场调查和监测数据的比较分析表明,定期应用 GPR 和 ERT 技术可有效评估冷却措施的性能。
{"title":"Effectiveness evaluation of cooling measures for express highway construction in permafrost regions based on GPR and ERT","authors":"","doi":"10.1016/j.coldregions.2024.104339","DOIUrl":"10.1016/j.coldregions.2024.104339","url":null,"abstract":"<div><div>Global warming and human activities are accelerating the degradation of permafrost on the Qinghai-Tibet Plateau (QTP), leading to significant settlement and cracking issues in the local express highway infrastructures. In response, the Gonghe-Yushu Express Highway (GYE) on the east edge of the QTP incorporated extensive cooling measures during its construction to enhance embankment stability. Despite these efforts, field investigations have disclosed that embankment diseases persist across various sections, including those with implemented cooling measures. This study focuses on a specific test and demonstration section of the GYE, employing a suite of cooling measures to assess their engineering effectiveness. Utilizing a combination of multi-time ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) detection, alongside on-site disease investigations and temperature monitoring, this research comprehensively evaluates the efficacy of different cooling interventions. Findings indicate that although cooling measures generally curb permafrost degradation in areas with ice-rich and ice-saturated soils, they fall short in sections with massive ground ice. Of the six cooling measures examined in the demonstration section, ventilation duct embankments emerge as the most effective, whereas crushed-rock layer embankments rank as the least. The study further reveals that the combined use of XPS insulation boards and two-phase closed thermosyphons inadequately addresses the issue of central heat accumulation in broad-width express highways, reducing uneven settlement issues but aggravating longitudinal cracking. Comparative analysis of on-site surveys and monitoring data suggests that regular application of GPR and ERT techniques can proficiently assess the performance of cooling measures.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applicability of two-phase modeling with compression experiments for snow compaction dynamics 两相模型与压缩实验在雪地压实动力学中的适用性
IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-02 DOI: 10.1016/j.coldregions.2024.104336
Compaction is a rheological process which, in many fields, has been modeled using a 1-D two-phase continuum framework. However, only recently has it been posed as a promising method for modeling the densification of snow into glacial ice, where the conventional model is empirical or semi-empirical. Here, we explore the applicability of a standard one-dimensional two-phase continuum framework for modeling snow compaction through theoretical and laboratory methods by analyzing and simplifying theory, and then experimentally constraining the model coefficient. We find in our theory analysis that the limit of slow compaction is reached such that air evacuation during the compaction process does not impede the deformation of ice grains. Model-data comparisons are performed using data from a series of uniaxial compression experiments of snow samples under a range of compaction rates (1 × 10−6 to 3 × 10−5 m s−1) and densities (250 to 450 kg m−3) at −10° and –20 °C, which show good measures of fit (r2>0.996). By defining a linear effective pressure function, we then constrain the model parameter by tuning against the data. While our model follows proper simplification of theory, the temperature and microstructural dependence are determined exclusively by the model parameter in a rheological formulation with the strain rate, and much scatter still exists. Within the selected range of compaction rates and densities, our results indicate that a 1-D two-phase model with a continuum framework alone does not likely capture important processes involved in the compaction process.
压实是一种流变过程,在许多领域都使用一维两相连续框架进行建模。然而,直到最近,它才被认为是一种很有前途的方法,可用于模拟积雪变成冰川冰的致密化过程,而传统的模型都是经验或半经验模型。在这里,我们通过理论分析和简化理论,然后通过实验对模型系数进行约束,探索了标准一维两相连续体框架在模拟积雪压实方面的适用性。我们在理论分析中发现,达到缓慢压实的极限时,压实过程中的空气排空不会阻碍冰粒的变形。在-10°和-20°C条件下,我们使用一系列雪样单轴压缩实验的数据进行了模型与数据的比较,结果显示拟合度良好(r2>0.996)。通过定义线性有效压力函数,我们可以根据数据调整模型参数。虽然我们的模型遵循了适当的简化理论,但温度和微观结构依赖性完全由流变公式中的模型参数和应变率决定,因此仍然存在很大的分散性。在选定的压实速率和密度范围内,我们的结果表明,仅采用连续体框架的一维两相模型不可能捕捉到压实过程中的重要过程。
{"title":"Applicability of two-phase modeling with compression experiments for snow compaction dynamics","authors":"","doi":"10.1016/j.coldregions.2024.104336","DOIUrl":"10.1016/j.coldregions.2024.104336","url":null,"abstract":"<div><div>Compaction is a rheological process which, in many fields, has been modeled using a 1-D two-phase continuum framework. However, only recently has it been posed as a promising method for modeling the densification of snow into glacial ice, where the conventional model is empirical or semi-empirical. Here, we explore the applicability of a standard one-dimensional two-phase continuum framework for modeling snow compaction through theoretical and laboratory methods by analyzing and simplifying theory, and then experimentally constraining the model coefficient. We find in our theory analysis that the limit of slow compaction is reached such that air evacuation during the compaction process does not impede the deformation of ice grains. Model-data comparisons are performed using data from a series of uniaxial compression experiments of snow samples under a range of compaction rates (1 × 10<sup>−6</sup> to 3 × 10<sup>−5</sup> m s<sup>−1</sup>) and densities (250 to 450 kg m<sup>−3</sup>) at −10° and –20 °C, which show good measures of fit (<span><math><msup><mi>r</mi><mn>2</mn></msup></math></span>&gt;0.996). By defining a linear effective pressure function, we then constrain the model parameter by tuning against the data. While our model follows proper simplification of theory, the temperature and microstructural dependence are determined exclusively by the model parameter in a rheological formulation with the strain rate, and much scatter still exists. Within the selected range of compaction rates and densities, our results indicate that a 1-D two-phase model with a continuum framework alone does not likely capture important processes involved in the compaction process.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142531386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A systematic investigation of the freezing process of silty clay through unidirectional stepwise freezing method combined with digital imaging processing technology 结合数字图像处理技术的单向分步冻结法对淤泥质粘土冻结过程的系统研究
IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL Pub Date : 2024-10-02 DOI: 10.1016/j.coldregions.2024.104340
Soil freezing represents a complex thermo-hydro-mechanical coupling process that encompasses a range of physical and mechanical phenomena, such as heat transfer, moisture migration, cryostructure development, ice lens segregation, frost heave, and consolidation, all of which interact and influence one another throughout the freezing process. This study conducted a unidirectional stepwise freezing test, comprising three distinct freezing stages, to investigate the freezing behavior of Qinghai-Tibet silty clay using digital imaging processing technology (DIPT), which includes an image acquisition system and a digital image processing system. The results demonstrate that the stepwise freezing test provides a more comprehensive insight into the physical and mechanical processes occurring during unidirectional soil freezing. At various stages of freezing, the temperature distribution within the sample achieves a linear stabilization, with the frozen zone exhibiting a slightly larger extent compared to the unfrozen zone. The longitudinal section of the sample developed layered cryogenic cracks, whereas the horizontal section revealed interconnected cryogenic polygonal cracks of varying sizes, which facilitated moisture migration and ice segregation. Furthermore, ice lenses can segregate within a broad temperature range below the soil freezing point in the frozen zone, resulting in frost heave within the frozen zone and consolidation of the unfrozen zone. This study proposes an experimental method to clarify the complex phenomenon and mechanisms of frost heave during soil freezing.
土壤冻结是一个复杂的热-水-机械耦合过程,包括一系列物理和机械现象,如热传导、水分迁移、冰冻结构发展、冰晶体离析、冻胀和固结等,所有这些现象在整个冻结过程中相互作用、相互影响。本研究利用数字图像处理技术(DIPT)(包括图像采集系统和数字图像处理系统)对青藏淤泥质粘土的冻结行为进行了单向分步冻结试验,包括三个不同的冻结阶段。结果表明,分步冻结试验能更全面地了解土壤单向冻结过程中发生的物理和力学过程。在冻结的不同阶段,样品内部的温度分布实现了线性稳定,与未冻结区相比,冻结区的范围略大。样本的纵向断面出现了分层的低温裂缝,而横向断面则出现了相互连接的大小不等的多边形低温裂缝,这有利于水分迁移和冰析出。此外,冰透镜体可在冻结区低于土壤冰点的较大温度范围内发生离析,导致冻结区内的冻胀和未冻结区的固结。本研究提出了一种实验方法,以阐明土壤冻结期间冻胀的复杂现象和机理。
{"title":"A systematic investigation of the freezing process of silty clay through unidirectional stepwise freezing method combined with digital imaging processing technology","authors":"","doi":"10.1016/j.coldregions.2024.104340","DOIUrl":"10.1016/j.coldregions.2024.104340","url":null,"abstract":"<div><div>Soil freezing represents a complex thermo-hydro-mechanical coupling process that encompasses a range of physical and mechanical phenomena, such as heat transfer, moisture migration, cryostructure development, ice lens segregation, frost heave, and consolidation, all of which interact and influence one another throughout the freezing process. This study conducted a unidirectional stepwise freezing test, comprising three distinct freezing stages, to investigate the freezing behavior of Qinghai-Tibet silty clay using digital imaging processing technology (DIPT), which includes an image acquisition system and a digital image processing system. The results demonstrate that the stepwise freezing test provides a more comprehensive insight into the physical and mechanical processes occurring during unidirectional soil freezing. At various stages of freezing, the temperature distribution within the sample achieves a linear stabilization, with the frozen zone exhibiting a slightly larger extent compared to the unfrozen zone. The longitudinal section of the sample developed layered cryogenic cracks, whereas the horizontal section revealed interconnected cryogenic polygonal cracks of varying sizes, which facilitated moisture migration and ice segregation. Furthermore, ice lenses can segregate within a broad temperature range below the soil freezing point in the frozen zone, resulting in frost heave within the frozen zone and consolidation of the unfrozen zone. This study proposes an experimental method to clarify the complex phenomenon and mechanisms of frost heave during soil freezing.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142420291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cold Regions Science and Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1