Integration of advanced biotechnology for green carbon

Miao Wang , Yixiang Wang , Jingyuan Liu , Hua Yu , Peng Liu , Yujing Yang , Dan Sun , Heng Kang , Yanting Wang , Jingfeng Tang , Chunxiang Fu , Liangcai Peng
{"title":"Integration of advanced biotechnology for green carbon","authors":"Miao Wang ,&nbsp;Yixiang Wang ,&nbsp;Jingyuan Liu ,&nbsp;Hua Yu ,&nbsp;Peng Liu ,&nbsp;Yujing Yang ,&nbsp;Dan Sun ,&nbsp;Heng Kang ,&nbsp;Yanting Wang ,&nbsp;Jingfeng Tang ,&nbsp;Chunxiang Fu ,&nbsp;Liangcai Peng","doi":"10.1016/j.greenca.2024.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon neutralization has been introduced as a long-term policy to control global warming and climate change. As plant photosynthesis produces the most abundant lignocellulosic biomass on Earth, its conversion to biofuels and bioproducts is considered a promising solution for reducing the net carbon release. However, natural lignocellulose recalcitrance crucially results in a costly biomass process along with secondary waste liberation. By updating recent advances in plant biotechnology, biomass engineering, and carbon nanotechnology, this study proposes a novel strategy that integrates the genetic engineering of bioenergy crops with green-like biomass processing for cost-effective biofuel conversion and high-value bioproduction. By selecting key genes and appropriate genetic manipulation approaches for precise lignocellulose modification, this study highlights the desirable genetic site mutants and transgenic lines that are raised in amorphous regions and inner broken chains account for high-density/length-reduced cellulose nanofiber assembly <em>in situ</em>. Since the amorphous regions and inner-broken chains of lignocellulose substrates are defined as the initial breakpoints for enhancing biochemical, chemical, and thermochemical conversions, desirable cellulose nanofibers can be employed to achieve near-complete biomass enzymatic saccharification for maximizing biofuels or high-quality biomaterials, even under cost-effective and green-like biomass processes <em>in vitro</em>. This study emphasizes the optimal thermal conversion for generating high-performance nanocarbons by combining appropriate nanomaterials generated from diverse lignocellulose resources. Therefore, this study provides a perspective on the potential of green carbon productivity as a part of the fourth industrial revolution.</p></div>","PeriodicalId":100595,"journal":{"name":"Green Carbon","volume":"2 2","pages":"Pages 164-175"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S295015552400017X/pdfft?md5=81433dc5eb49bb400ef3ac8bcdc4e071&pid=1-s2.0-S295015552400017X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Carbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S295015552400017X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon neutralization has been introduced as a long-term policy to control global warming and climate change. As plant photosynthesis produces the most abundant lignocellulosic biomass on Earth, its conversion to biofuels and bioproducts is considered a promising solution for reducing the net carbon release. However, natural lignocellulose recalcitrance crucially results in a costly biomass process along with secondary waste liberation. By updating recent advances in plant biotechnology, biomass engineering, and carbon nanotechnology, this study proposes a novel strategy that integrates the genetic engineering of bioenergy crops with green-like biomass processing for cost-effective biofuel conversion and high-value bioproduction. By selecting key genes and appropriate genetic manipulation approaches for precise lignocellulose modification, this study highlights the desirable genetic site mutants and transgenic lines that are raised in amorphous regions and inner broken chains account for high-density/length-reduced cellulose nanofiber assembly in situ. Since the amorphous regions and inner-broken chains of lignocellulose substrates are defined as the initial breakpoints for enhancing biochemical, chemical, and thermochemical conversions, desirable cellulose nanofibers can be employed to achieve near-complete biomass enzymatic saccharification for maximizing biofuels or high-quality biomaterials, even under cost-effective and green-like biomass processes in vitro. This study emphasizes the optimal thermal conversion for generating high-performance nanocarbons by combining appropriate nanomaterials generated from diverse lignocellulose resources. Therefore, this study provides a perspective on the potential of green carbon productivity as a part of the fourth industrial revolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
先进生物技术与绿色碳素的结合
碳中和已被作为控制全球变暖和气候变化的一项长期政策提出。由于植物光合作用产生了地球上最丰富的木质纤维素生物质,因此将其转化为生物燃料和生物产品被认为是减少净碳排放的一个有前途的解决方案。然而,天然木质纤维素的难降解性导致生物质加工成本高昂,同时还会产生二次废物。通过更新植物生物技术、生物质工程和碳纳米技术的最新进展,本研究提出了一种新策略,将生物能源作物的基因工程与绿色生物质加工相结合,以实现具有成本效益的生物燃料转化和高价值生物生产。通过选择关键基因和适当的遗传操作方法对木质纤维素进行精确改造,本研究强调了在无定形区和内部断链中培育的理想基因位点突变体和转基因品系,这些基因位点突变体和转基因品系可在原位组装出高密度/长度减少的纤维素纳米纤维。由于木质纤维素基质的无定形区和内部断裂链被定义为增强生化、化学和热化学转化的初始断裂点,因此,即使是在具有成本效益和类似绿色的体外生物质过程中,也可以利用理想的纤维素纳米纤维实现近乎完全的生物质酶糖化,从而最大限度地生产生物燃料或高质量的生物材料。本研究强调通过结合从不同木质纤维素资源中生成的适当纳米材料,实现最佳热转换以生成高性能纳米碳。因此,本研究为第四次工业革命中绿色碳生产力的潜力提供了一个视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Catalyst-membrane system overcomes limitations in propane dehydrogenation Toward sustainable supply of vaccine adjuvant via synthetic biology Hexavalent iridium boosts oxygen evolution performance Interdisciplinary results of an Italian research project on methane recovery and carbon dioxide storage in natural gas hydrate reservoirs Mini review on electron mediator in artificial photosynthesis: Design, fabrication, and perspectives based on energy level matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1