Duo Yang , Bing Hu , An Liu , A-Long Jin , Kwan L. Yeung , Yang You
{"title":"WBSP: Addressing stragglers in distributed machine learning with worker-busy synchronous parallel","authors":"Duo Yang , Bing Hu , An Liu , A-Long Jin , Kwan L. Yeung , Yang You","doi":"10.1016/j.parco.2024.103092","DOIUrl":null,"url":null,"abstract":"<div><p>Parameter server is widely used in distributed machine learning to accelerate training. However, the increasing heterogeneity of workers’ computing capabilities leads to the issue of stragglers, making parameter synchronization challenging. To address this issue, we propose a solution called Worker-Busy Synchronous Parallel (WBSP). This approach eliminates the waiting time of fast workers during the synchronization process and decouples the gradient upload and model download of fast workers into asymmetric parts. By doing so, it allows fast workers to complete multiple steps of local training and upload more gradients to the server, improving computational resource utilization. Additionally, the global model is only updated when the slowest worker uploads the gradients, ensuring the consistency of global models that are pulled down by all workers and the convergence of the global model. Building upon WBSP, we propose an optimized version to further reduce the communication overhead. It enables parallel execution of communication and computation tasks on workers to shorten the global synchronization interval, thereby improving training speed. We conduct theoretical analyses for the proposed mechanisms. Extensive experiments verify that our mechanism can reduce the required time to achieve the target accuracy by up to 60% compared with the fastest method and increase the proportion of computation time from 55%–72% in existing methods to 91%.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"121 ","pages":"Article 103092"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000309","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Parameter server is widely used in distributed machine learning to accelerate training. However, the increasing heterogeneity of workers’ computing capabilities leads to the issue of stragglers, making parameter synchronization challenging. To address this issue, we propose a solution called Worker-Busy Synchronous Parallel (WBSP). This approach eliminates the waiting time of fast workers during the synchronization process and decouples the gradient upload and model download of fast workers into asymmetric parts. By doing so, it allows fast workers to complete multiple steps of local training and upload more gradients to the server, improving computational resource utilization. Additionally, the global model is only updated when the slowest worker uploads the gradients, ensuring the consistency of global models that are pulled down by all workers and the convergence of the global model. Building upon WBSP, we propose an optimized version to further reduce the communication overhead. It enables parallel execution of communication and computation tasks on workers to shorten the global synchronization interval, thereby improving training speed. We conduct theoretical analyses for the proposed mechanisms. Extensive experiments verify that our mechanism can reduce the required time to achieve the target accuracy by up to 60% compared with the fastest method and increase the proportion of computation time from 55%–72% in existing methods to 91%.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications