{"title":"Multi-GPU 3D k-nearest neighbors computation with application to ICP, point cloud smoothing and normals computation","authors":"Alexander Agathos , Philip Azariadis","doi":"10.1016/j.parco.2024.103093","DOIUrl":null,"url":null,"abstract":"<div><p>The k-Nearest Neighbors algorithm is a fundamental algorithm that finds applications in many fields like Machine Learning, Computer Graphics, Computer Vision, and others. The algorithm determines the closest points (d-dimensional) of a reference set R according to a query set of points Q under a specific metric (Euclidean, Mahalanobis, Manhattan, etc.). This work focuses on the utilization of multiple Graphical Processing Units for the acceleration of the k-Nearest Neighbors algorithm with large or very large sets of 3D points. With the proposed approach the space of the reference set is divided into a 3D grid which is used to facilitate the search for the nearest neighbors. The search in the grid is performed in a multiresolution manner starting from a high-resolution grid and ending up in a coarse one, thus accounting for point clouds that may have non-uniform sampling and/or outliers. Three important algorithms in reverse engineering are revisited and new multi-GPU versions are proposed based on the introduced KNN algorithm. More specifically, the new multi-GPU approach is applied to the Iterative Closest Point algorithm, to the point cloud smoothing, and to the point cloud normal vectors computation and orientation problem. A series of tests and experiments have been conducted and discussed in the paper showing the merits of the proposed multi-GPU approach.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"121 ","pages":"Article 103093"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000310","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The k-Nearest Neighbors algorithm is a fundamental algorithm that finds applications in many fields like Machine Learning, Computer Graphics, Computer Vision, and others. The algorithm determines the closest points (d-dimensional) of a reference set R according to a query set of points Q under a specific metric (Euclidean, Mahalanobis, Manhattan, etc.). This work focuses on the utilization of multiple Graphical Processing Units for the acceleration of the k-Nearest Neighbors algorithm with large or very large sets of 3D points. With the proposed approach the space of the reference set is divided into a 3D grid which is used to facilitate the search for the nearest neighbors. The search in the grid is performed in a multiresolution manner starting from a high-resolution grid and ending up in a coarse one, thus accounting for point clouds that may have non-uniform sampling and/or outliers. Three important algorithms in reverse engineering are revisited and new multi-GPU versions are proposed based on the introduced KNN algorithm. More specifically, the new multi-GPU approach is applied to the Iterative Closest Point algorithm, to the point cloud smoothing, and to the point cloud normal vectors computation and orientation problem. A series of tests and experiments have been conducted and discussed in the paper showing the merits of the proposed multi-GPU approach.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications