Inferring entropy production from time-dependent moments

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-07-12 DOI:10.1038/s42005-024-01725-3
Prashant Singh, Karel Proesmans
{"title":"Inferring entropy production from time-dependent moments","authors":"Prashant Singh, Karel Proesmans","doi":"10.1038/s42005-024-01725-3","DOIUrl":null,"url":null,"abstract":"Measuring entropy production of a system directly from the experimental data is highly desirable since it gives a quantifiable measure of the time-irreversibility for non-equilibrium systems and can be used as a cost function to optimize the performance of the system. Although numerous methods are available to infer the entropy production of stationary systems, there are only a limited number of methods that have been proposed for time-dependent systems and, to the best of our knowledge, none of these methods have been applied to experimental systems. Herein, we develop a general non-invasive methodology to infer a lower bound on the mean total entropy production for arbitrary time-dependent continuous-state Markov systems in terms of the moments of the underlying state variables. The method gives quite accurate estimates for the entropy production, both for theoretical toy models and for experimental bit erasure, even with a very limited amount of experimental data. Directly measuring entropy production from experimental data without prior knowledge of the underlying model is highly desirable, as it quantifies time-irreversibility in non-equilibrium systems and can be used to optimize system performance. In this work, the authors have developed a general methodology to infer entropy production for arbitrary time-dependent systems from its first few moments. The method gives quite accurate estimates both for theoretical examples as well as for experimental data on bit erasure.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01725-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01725-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Measuring entropy production of a system directly from the experimental data is highly desirable since it gives a quantifiable measure of the time-irreversibility for non-equilibrium systems and can be used as a cost function to optimize the performance of the system. Although numerous methods are available to infer the entropy production of stationary systems, there are only a limited number of methods that have been proposed for time-dependent systems and, to the best of our knowledge, none of these methods have been applied to experimental systems. Herein, we develop a general non-invasive methodology to infer a lower bound on the mean total entropy production for arbitrary time-dependent continuous-state Markov systems in terms of the moments of the underlying state variables. The method gives quite accurate estimates for the entropy production, both for theoretical toy models and for experimental bit erasure, even with a very limited amount of experimental data. Directly measuring entropy production from experimental data without prior knowledge of the underlying model is highly desirable, as it quantifies time-irreversibility in non-equilibrium systems and can be used to optimize system performance. In this work, the authors have developed a general methodology to infer entropy production for arbitrary time-dependent systems from its first few moments. The method gives quite accurate estimates both for theoretical examples as well as for experimental data on bit erasure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从随时间变化的时刻推断熵的产生
从实验数据中直接测量系统的熵产生是非常理想的,因为它可以量化测量非平衡系统的时间可逆性,并可用作优化系统性能的成本函数。尽管有许多方法可用于推断静止系统的熵产生,但针对时间相关系统提出的方法数量有限,而且据我们所知,这些方法都未应用于实验系统。在这里,我们开发了一种通用的非侵入式方法,根据基础状态变量的矩来推断任意时变连续状态马尔可夫系统的平均总熵生成下限。即使实验数据量非常有限,该方法也能对理论玩具模型和实验比特擦除的熵产生给出相当精确的估计。从实验数据中直接测量熵的产生而无需事先了解基础模型是非常可取的,因为它可以量化非平衡系统中的时间可逆性,并可用于优化系统性能。在这项工作中,作者开发了一种通用方法,可从任意时间相关系统的前几个时刻推断其熵的产生。该方法对理论示例和比特擦除实验数据都给出了相当精确的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Measurement of coherent vibrational dynamics with X-ray Transient Absorption Spectroscopy simultaneously at the Carbon K- and Chlorine L2,3- edges Design of a monolithic silicon-on-insulator resonator spiking neuron Inference through innovation processes tested in the authorship attribution task Transport of topological defects in a biphasic mixture of active and passive nematic fluids Readout error mitigated quantum state tomography tested on superconducting qubits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1