Ultra-thin optical power converters based on Gires–Tournois resonator configuration operating in high-order modes

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, APPLIED Applied Physics Express Pub Date : 2024-07-10 DOI:10.35848/1882-0786/ad59f5
Zongkun Zhang, Dongjie Zhou, Chong Tan, Qianli Qiu, Huiyong Deng, Ning Dai and Jiaming Hao
{"title":"Ultra-thin optical power converters based on Gires–Tournois resonator configuration operating in high-order modes","authors":"Zongkun Zhang, Dongjie Zhou, Chong Tan, Qianli Qiu, Huiyong Deng, Ning Dai and Jiaming Hao","doi":"10.35848/1882-0786/ad59f5","DOIUrl":null,"url":null,"abstract":"In this study, we propose a strategy to construct high-performance ultra-thin optical power converters (OPCs) based on Gires–Tournois resonator configurations operating in high-order modes. Despite reducing the absorber thickness by 5.8 to 8.1 times, the proposed ultra-thin OPCs exhibit the same (comparable) energy absorption characteristic and demonstrate superior electrical performance compared to a thick OPC. It is revealed that such high absorption effects originated from the excitation of optical asymmetric Fabry–Perot-type high-order inference resonance modes and the electrical performance enhancement can be attributed to the reduction of the absorber thickness.","PeriodicalId":8093,"journal":{"name":"Applied Physics Express","volume":"45 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1882-0786/ad59f5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a strategy to construct high-performance ultra-thin optical power converters (OPCs) based on Gires–Tournois resonator configurations operating in high-order modes. Despite reducing the absorber thickness by 5.8 to 8.1 times, the proposed ultra-thin OPCs exhibit the same (comparable) energy absorption characteristic and demonstrate superior electrical performance compared to a thick OPC. It is revealed that such high absorption effects originated from the excitation of optical asymmetric Fabry–Perot-type high-order inference resonance modes and the electrical performance enhancement can be attributed to the reduction of the absorber thickness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于以高阶模式运行的 Gires-Tournois 谐振器配置的超薄光功率转换器
在这项研究中,我们提出了一种基于在高阶模式下工作的 Gires-Tournois 谐振器配置来构建高性能超薄光功率转换器(OPC)的策略。尽管吸收器的厚度减少了 5.8 至 8.1 倍,但与厚的光功率转换器相比,所提出的超薄光功率转换器表现出相同(可比)的能量吸收特性,并显示出更优越的电气性能。研究表明,这种高吸收效应源于光学非对称法布里-珀罗型高阶推理共振模式的激发,而电气性能的增强可归因于吸收体厚度的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Express
Applied Physics Express 物理-物理:应用
CiteScore
4.80
自引率
8.70%
发文量
310
审稿时长
1.2 months
期刊介绍: Applied Physics Express (APEX) is a letters journal devoted solely to rapid dissemination of up-to-date and concise reports on new findings in applied physics. The motto of APEX is high scientific quality and prompt publication. APEX is a sister journal of the Japanese Journal of Applied Physics (JJAP) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
期刊最新文献
Sensing and frequency selecting with toroidal resonance in metasurface A unified global model accompanied with a voltage and current sensor for low-pressure capacitively coupled RF discharge Degradation mechanism of degenerate n-GaN ohmic contact induced by ion beam etching damage Thermoelectric measurements of nanomaterials by nanodiamond quantum thermometry Physical reservoir computing with visible-light signals using dye-sensitized solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1