Study on milling surface quality of superalloy GH4145

IF 1.5 4区 工程技术 Q3 ENGINEERING, MECHANICAL Industrial Lubrication and Tribology Pub Date : 2024-07-16 DOI:10.1108/ilt-03-2024-0080
Jinfu Shi, Qi Gao
{"title":"Study on milling surface quality of superalloy GH4145","authors":"Jinfu Shi, Qi Gao","doi":"10.1108/ilt-03-2024-0080","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to reveal the influence of milling process parameters on the surface roughness and morphology of superalloy GH4145.The groove milling mechanism and surface quality influence factors of superalloy GH4145 were studied experimentally.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This paper provides investigations on three-dimensional finite element model (FEM) and simulation of milling process for GH4145.The milling experiment uses Taguchi L16 experimental design and single factor experimental design. The surface morphology of the workpiece was observed by scanning electron microscopy, and the influence mechanism of milling parameters on surface quality is expounded.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The results show that the cutting force increases by 133% with the increase in milling depth. The measured minimum surface roughness is 0.035 µm. With the change in milling depth, the surface roughness increases by 249%. With the change in cutting speed, the surface roughness increased by 54.8%. As the feed rate increases, the surface roughness increases by a maximum of 91.1%. The milling experiment verifies that the error between the predicted surface roughness and the actual value is less than 8%.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The milling experiment uses a Taguchi L16 experimental design and a single-factor experimental design. Mathematical models can be used in research as a contribution to current research. In addition, the milling cutter can be changed to further test this experiment. Reveal the influence of milling process parameters on the surface roughness and morphology of superalloy GH4145.</p><!--/ Abstract__block -->\n<h3>Peer review</h3>\n<p>The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0080/</p><!--/ Abstract__block -->","PeriodicalId":13523,"journal":{"name":"Industrial Lubrication and Tribology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Lubrication and Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-03-2024-0080","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

This study aims to reveal the influence of milling process parameters on the surface roughness and morphology of superalloy GH4145.The groove milling mechanism and surface quality influence factors of superalloy GH4145 were studied experimentally.

Design/methodology/approach

This paper provides investigations on three-dimensional finite element model (FEM) and simulation of milling process for GH4145.The milling experiment uses Taguchi L16 experimental design and single factor experimental design. The surface morphology of the workpiece was observed by scanning electron microscopy, and the influence mechanism of milling parameters on surface quality is expounded.

Findings

The results show that the cutting force increases by 133% with the increase in milling depth. The measured minimum surface roughness is 0.035 µm. With the change in milling depth, the surface roughness increases by 249%. With the change in cutting speed, the surface roughness increased by 54.8%. As the feed rate increases, the surface roughness increases by a maximum of 91.1%. The milling experiment verifies that the error between the predicted surface roughness and the actual value is less than 8%.

Originality/value

The milling experiment uses a Taguchi L16 experimental design and a single-factor experimental design. Mathematical models can be used in research as a contribution to current research. In addition, the milling cutter can be changed to further test this experiment. Reveal the influence of milling process parameters on the surface roughness and morphology of superalloy GH4145.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0080/

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超级合金 GH4145 铣削表面质量研究
目的 本文旨在揭示铣削工艺参数对超耐热合金 GH4145 表面粗糙度和形貌的影响,通过实验研究了超耐热合金 GH4145 的铣槽机理和表面质量影响因素。结果表明,随着铣削深度的增加,切削力增加了 133%。测得的最小表面粗糙度为 0.035 µm。随着铣削深度的变化,表面粗糙度增加了 249%。随着切削速度的变化,表面粗糙度增加了 54.8%。随着进给量的增加,表面粗糙度最大增加了 91.1%。铣削实验验证了预测表面粗糙度与实际值之间的误差小于 8%。数学模型可用于研究,是对当前研究的贡献。此外,还可以通过更换铣刀来进一步检验本实验。揭示铣削工艺参数对超耐热合金 GH4145 表面粗糙度和形貌的影响。同行评议本文的同行评议记录见:https://publons.com/publon/10.1108/ILT-03-2024-0080/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial Lubrication and Tribology
Industrial Lubrication and Tribology 工程技术-工程:机械
CiteScore
3.00
自引率
18.80%
发文量
129
审稿时长
1.9 months
期刊介绍: Industrial Lubrication and Tribology provides a broad coverage of the materials and techniques employed in tribology. It contains a firm technical news element which brings together and promotes best practice in the three disciplines of tribology, which comprise lubrication, wear and friction. ILT also follows the progress of research into advanced lubricants, bearings, seals, gears and related machinery parts, as well as materials selection. A double-blind peer review process involving the editor and other subject experts ensures the content''s validity and relevance.
期刊最新文献
Effect of elastic deformation on squeezing film lubrication properties of soft tribocontacts with microstructured surface Optimization of high-speed reducer in electric vehicle based on analysis of lubrication Movement behavior of oil droplet on porous surfaces under the influence of orifice structure Simulation and mechanism analysis of fretting wear of parallel groove clamps in distribution networks caused by Karman vortex vibration Influence of surface texture on pocket pairs lubrication performance of cylindrical roller bearings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1