Giulia Lorenzetti, Laura Barsanti, Lorenzo Birindelli, Paolo Gualtieri, Stefano Legnaioli
{"title":"Nomen omen: Euglena gracilis possesses a rhodopsin‐based photoreceptor","authors":"Giulia Lorenzetti, Laura Barsanti, Lorenzo Birindelli, Paolo Gualtieri, Stefano Legnaioli","doi":"10.1111/php.13999","DOIUrl":null,"url":null,"abstract":"The unicellular microalga <jats:italic>Euglena gracilis</jats:italic> has always been considered the ideal alga to investigate photoreceptive responses and systems, and it has been the subject of hundreds of articles. Moreover, because of its detectable photoreceptor, it has been given a key role in the evolution of photoreception, from single and simple cells to complex visual system of higher organisms. In this article, we report the Raman spectra recorded in vivo on photoreceptors of <jats:italic>E. gracilis</jats:italic> and <jats:italic>Bos taurus</jats:italic> retina. The almost perfect superimposability (correlation coefficient <jats:italic>r</jats:italic> = 0.955) of these spectra states that the <jats:italic>Euglena</jats:italic> possesses a photoreceptor with the same structural characteristic of a vertebrate photoreceptor, i.e. a stack of membrane layers embedding rhodopsin‐like proteins. Raman spectra recorded in vivo on photoreceptors of <jats:italic>E. gracilis</jats:italic> after hydroxylamine treatment further confirm our findings, which should lead to a reconsideration of most of the scientific literature on algae photoreception and eye evolution.","PeriodicalId":20133,"journal":{"name":"Photochemistry and Photobiology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochemistry and Photobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/php.13999","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The unicellular microalga Euglena gracilis has always been considered the ideal alga to investigate photoreceptive responses and systems, and it has been the subject of hundreds of articles. Moreover, because of its detectable photoreceptor, it has been given a key role in the evolution of photoreception, from single and simple cells to complex visual system of higher organisms. In this article, we report the Raman spectra recorded in vivo on photoreceptors of E. gracilis and Bos taurus retina. The almost perfect superimposability (correlation coefficient r = 0.955) of these spectra states that the Euglena possesses a photoreceptor with the same structural characteristic of a vertebrate photoreceptor, i.e. a stack of membrane layers embedding rhodopsin‐like proteins. Raman spectra recorded in vivo on photoreceptors of E. gracilis after hydroxylamine treatment further confirm our findings, which should lead to a reconsideration of most of the scientific literature on algae photoreception and eye evolution.
期刊介绍:
Photochemistry and Photobiology publishes original research articles and reviews on current topics in photoscience. Topics span from the primary interaction of light with molecules, cells, and tissue to the subsequent biological responses, representing disciplinary and interdisciplinary research in the fields of chemistry, physics, biology, and medicine. Photochemistry and Photobiology is the official journal of the American Society for Photobiology.