Soft, body conformable electronics for thermoregulation enabled by kirigami

IF 8.1 1区 医学 Q1 ENGINEERING, BIOMEDICAL Bio-Design and Manufacturing Pub Date : 2024-07-12 DOI:10.1007/s42242-024-00290-6
Lung Chow, Guangyao Zhao, Pengcheng Wu, Xingcan Huang, Jiyu Li, Jian Li, Wanying Wang, Guihuan Guo, Zhiyuan Li, Jiachen Wang, Jingkun Zhou, Yawen Yang, Yuyu Gao, Binbin Zhang, Qiang Zhang, Dengfeng Li, Ya Huang, Kuanming Yao, Jian Lu, Xinge Yu
{"title":"Soft, body conformable electronics for thermoregulation enabled by kirigami","authors":"Lung Chow, Guangyao Zhao, Pengcheng Wu, Xingcan Huang, Jiyu Li, Jian Li, Wanying Wang, Guihuan Guo, Zhiyuan Li, Jiachen Wang, Jingkun Zhou, Yawen Yang, Yuyu Gao, Binbin Zhang, Qiang Zhang, Dengfeng Li, Ya Huang, Kuanming Yao, Jian Lu, Xinge Yu","doi":"10.1007/s42242-024-00290-6","DOIUrl":null,"url":null,"abstract":"<p>The application of thermoelectric devices (TEDs) for personalized thermoregulation is attractive for saving energy while balancing the quality of life. TEDs that directly attach to human skin remarkably minimized the energy wasted for cooling the entire environment. However, facing the extreme dynamic geometry change and strain of human skin, conventional TEDs cannot align with the contour of our bodies for the best thermoregulation effect. Hence, we designed a kirigami-based wearable TED with excellent water vapor permeability, flexibility, and conformability. Numerical analysis and experimental results reveal that our product can withstand various types of large mechanical deformation without circuit rupture. The stated outcome and proposed facile approach not only reinforce the development of wearable TEDs but also offer an innovative opportunity for different electronics that require high conformability.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\n","PeriodicalId":48627,"journal":{"name":"Bio-Design and Manufacturing","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Design and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42242-024-00290-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The application of thermoelectric devices (TEDs) for personalized thermoregulation is attractive for saving energy while balancing the quality of life. TEDs that directly attach to human skin remarkably minimized the energy wasted for cooling the entire environment. However, facing the extreme dynamic geometry change and strain of human skin, conventional TEDs cannot align with the contour of our bodies for the best thermoregulation effect. Hence, we designed a kirigami-based wearable TED with excellent water vapor permeability, flexibility, and conformability. Numerical analysis and experimental results reveal that our product can withstand various types of large mechanical deformation without circuit rupture. The stated outcome and proposed facile approach not only reinforce the development of wearable TEDs but also offer an innovative opportunity for different electronics that require high conformability.

Graphic abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过叽里格米实现用于体温调节的柔软贴合人体的电子器件
应用热电设备(TED)进行个性化体温调节,对节约能源和平衡生活质量具有吸引力。直接附着在人体皮肤上的 TED 可显著减少用于冷却整个环境的能源浪费。然而,面对人体皮肤极端动态的几何形状变化和应变,传统的 TED 无法与人体轮廓保持一致,从而达到最佳的体温调节效果。因此,我们设计了一种基于叽里格米的可穿戴 TED,它具有出色的水蒸气渗透性、柔韧性和顺应性。数值分析和实验结果表明,我们的产品可以承受各种类型的巨大机械变形,而不会发生电路断裂。所取得的成果和提出的简便方法不仅加强了可穿戴 TED 的发展,还为需要高保形性的不同电子产品提供了创新机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bio-Design and Manufacturing
Bio-Design and Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
13.30
自引率
7.60%
发文量
148
期刊介绍: Bio-Design and Manufacturing reports new research, new technology and new applications in the field of biomanufacturing, especially 3D bioprinting. Topics of Bio-Design and Manufacturing cover tissue engineering, regenerative medicine, mechanical devices from the perspectives of materials, biology, medicine and mechanical engineering, with a focus on manufacturing science and technology to fulfil the requirement of bio-design.
期刊最新文献
Light-based 3D printing of stimulus-responsive hydrogels for miniature devices: recent progress and perspective Kinematics of mandibular advancement devices (MADs): Why do some MADs move the lower jaw backward during mouth opening? Enhanced axonal regeneration and functional recovery of the injured sciatic nerve in a rat model by lithium-loaded electrospun nanofibrous scaffolds Advanced strategies for 3D-printed neural scaffolds: materials, structure, and nerve remodeling Integrated nanoporous electroporation and sensing electrode array for total dynamic time-domain cardiomyocyte membrane resealing assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1