Scalar Function Topology Divergence: Comparing Topology of 3D Objects

Ilya Trofimov, Daria Voronkova, Eduard Tulchinskii, Evgeny Burnaev, Serguei Barannikov
{"title":"Scalar Function Topology Divergence: Comparing Topology of 3D Objects","authors":"Ilya Trofimov, Daria Voronkova, Eduard Tulchinskii, Evgeny Burnaev, Serguei Barannikov","doi":"arxiv-2407.08364","DOIUrl":null,"url":null,"abstract":"We propose a new topological tool for computer vision - Scalar Function\nTopology Divergence (SFTD), which measures the dissimilarity of multi-scale\ntopology between sublevel sets of two functions having a common domain.\nFunctions can be defined on an undirected graph or Euclidean space of any\ndimensionality. Most of the existing methods for comparing topology are based\non Wasserstein distance between persistence barcodes and they don't take into\naccount the localization of topological features. On the other hand, the\nminimization of SFTD ensures that the corresponding topological features of\nscalar functions are located in the same places. The proposed tool provides\nuseful visualizations depicting areas where functions have topological\ndissimilarities. We provide applications of the proposed method to 3D computer\nvision. In particular, experiments demonstrate that SFTD improves the\nreconstruction of cellular 3D shapes from 2D fluorescence microscopy images,\nand helps to identify topological errors in 3D segmentation.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new topological tool for computer vision - Scalar Function Topology Divergence (SFTD), which measures the dissimilarity of multi-scale topology between sublevel sets of two functions having a common domain. Functions can be defined on an undirected graph or Euclidean space of any dimensionality. Most of the existing methods for comparing topology are based on Wasserstein distance between persistence barcodes and they don't take into account the localization of topological features. On the other hand, the minimization of SFTD ensures that the corresponding topological features of scalar functions are located in the same places. The proposed tool provides useful visualizations depicting areas where functions have topological dissimilarities. We provide applications of the proposed method to 3D computer vision. In particular, experiments demonstrate that SFTD improves the reconstruction of cellular 3D shapes from 2D fluorescence microscopy images, and helps to identify topological errors in 3D segmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
标量函数拓扑发散:比较三维物体的拓扑结构
我们为计算机视觉提出了一种新的拓扑工具--标量函数拓扑发散(SFTD),它可以测量具有共同领域的两个函数的子级集之间的多尺度拓扑差异。现有的拓扑比较方法大多基于持久条形码之间的瓦瑟斯坦距离,没有考虑拓扑特征的定位。另一方面,SFTD 的最小化确保了标量函数的相应拓扑特征位于相同的位置。所提出的工具提供了有用的可视化方法,描述了函数具有拓扑不相似性的区域。我们将所提出的方法应用于三维计算机视觉。特别是,实验证明 SFTD 改善了二维荧光显微镜图像中细胞三维形状的构建,并有助于识别三维分割中的拓扑错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor triangular geometry of modules over the mod 2 Steenrod algebra Ring operads and symmetric bimonoidal categories Inferring hyperuniformity from local structures via persistent homology Computing the homology of universal covers via effective homology and discrete vector fields Geometric representation of cohomology classes for the Lie groups Spin(7) and Spin(8)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1