Two-dimensional iron oxide/graphene-based nanocomposites as high-performance solid lubricants

IF 4.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY 2D Materials Pub Date : 2024-07-11 DOI:10.1088/2053-1583/ad5f3f
Pratik S Kasbe, Muxuan Yang, Juan Bosch, Jinyu Bu, Christopher DellaCorte and Weinan Xu
{"title":"Two-dimensional iron oxide/graphene-based nanocomposites as high-performance solid lubricants","authors":"Pratik S Kasbe, Muxuan Yang, Juan Bosch, Jinyu Bu, Christopher DellaCorte and Weinan Xu","doi":"10.1088/2053-1583/ad5f3f","DOIUrl":null,"url":null,"abstract":"Beyond conventional 2D layered materials such as graphene and transition metal dichalcogenides, 2D metal oxides have also received much interest in recent years. They have unique electronic (such as 2D TiO2 and MoO2), catalytic (such as 2D CeO2 and MnO2), and magnetic properties (such as 2D Fe2O3) compared with bulk metal oxides due to their atomically thin structures. Certain types of 2D metal oxides also have the potential to be a new type of high-performance solid lubricants due to the tunable interlayer interaction and possibility for 2D heterostructure formation, but this remains largely unexplored. In this work, we developed a scalable microwave-assisted solid-state synthesis of 2D Fe2O3 and their nanocomposites with reduced graphene oxide (rGO). The 2D Fe2O3/rGO nanocomposites were systematically characterized by electron microscopies and spectroscopies, and their utilization as solid lubricants was studied by pin-on-disk tribometer on both silicon and steel substrates. The results show that due to the easy sliding between 2D Fe2O3 and rGO nanosheets and their unique magnetic-induced assembled morphology, low coefficient of friction (COF) can be achieved for both steel-silicon and steel-steel interfaces. Superlubricity (COF ∼ 0.007) can be achieved for the 2D Fe2O3/rGO nanocomposite with a GO primer layer on a steel substrate. This work provides new insights into the development of functional 2D nanocomposites and expands their applications to solid lubrication and beyond.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"24 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad5f3f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Beyond conventional 2D layered materials such as graphene and transition metal dichalcogenides, 2D metal oxides have also received much interest in recent years. They have unique electronic (such as 2D TiO2 and MoO2), catalytic (such as 2D CeO2 and MnO2), and magnetic properties (such as 2D Fe2O3) compared with bulk metal oxides due to their atomically thin structures. Certain types of 2D metal oxides also have the potential to be a new type of high-performance solid lubricants due to the tunable interlayer interaction and possibility for 2D heterostructure formation, but this remains largely unexplored. In this work, we developed a scalable microwave-assisted solid-state synthesis of 2D Fe2O3 and their nanocomposites with reduced graphene oxide (rGO). The 2D Fe2O3/rGO nanocomposites were systematically characterized by electron microscopies and spectroscopies, and their utilization as solid lubricants was studied by pin-on-disk tribometer on both silicon and steel substrates. The results show that due to the easy sliding between 2D Fe2O3 and rGO nanosheets and their unique magnetic-induced assembled morphology, low coefficient of friction (COF) can be achieved for both steel-silicon and steel-steel interfaces. Superlubricity (COF ∼ 0.007) can be achieved for the 2D Fe2O3/rGO nanocomposite with a GO primer layer on a steel substrate. This work provides new insights into the development of functional 2D nanocomposites and expands their applications to solid lubrication and beyond.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为高性能固体润滑剂的二维氧化铁/石墨烯基纳米复合材料
除了传统的二维层状材料(如石墨烯和过渡金属二卤化物),二维金属氧化物近年来也受到了广泛关注。与块状金属氧化物相比,二维金属氧化物具有独特的电子性能(如二维 TiO2 和 MoO2)、催化性能(如二维 CeO2 和 MnO2)和磁性能(如二维 Fe2O3),因为它们的结构非常薄。某些类型的二维金属氧化物还具有成为新型高性能固体润滑剂的潜力,因为它们具有可调的层间相互作用和形成二维异质结构的可能性,但这在很大程度上仍未得到探索。在这项工作中,我们开发了一种可扩展的微波辅助固态合成二维 Fe2O3 及其与还原氧化石墨烯(rGO)的纳米复合材料。我们通过电子显微镜和光谱对二维 Fe2O3/rGO 纳米复合材料进行了系统表征,并用针盘摩擦磨损仪研究了它们在硅基底和钢基底上作为固体润滑剂的应用。结果表明,由于二维 Fe2O3 纳米片和 rGO 纳米片之间的易滑动性及其独特的磁诱导组装形态,钢-硅界面和钢-钢界面都能实现较低的摩擦系数(COF)。二维 Fe2O3/rGO 纳米复合材料与钢基底上的 GO 底漆层可实现超润滑性(COF ∼ 0.007)。这项研究为开发功能性二维纳米复合材料提供了新的视角,并将其应用拓展到固体润滑及其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
2D Materials
2D Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
10.70
自引率
5.50%
发文量
138
审稿时长
1.5 months
期刊介绍: 2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.
期刊最新文献
Constructing three-dimensional GO/CNT@NMP aerogels towards primary lithium metal batteries Two-dimensional Janus MXTe (M = Hf, Zr; X = S, Se) piezoelectrocatalysts: a comprehensive investigation of its electronic, synthesis feasibility, electric polarization, and hydrogen evolution reaction activity The future of Xenes beyond graphene: challenges and perspective Soft-carbon-tuned hard carbon anode for ultrahigh-rate sodium storage Multiscale computational modeling techniques in study and design of 2D materials: recent advances, challenges, and opportunities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1