Fungal Enzymes for Saccharification of Gamma-Valerolactone-Pretreated White Birch Wood: Optimization of the Production of Talaromyces amestolkiae Cellulolytic Cocktail

IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Engineering in Life Sciences Pub Date : 2024-07-11 DOI:10.1002/elsc.202400029
Laura I. de Eugenio, Isabel de la Torre, Felipe de Salas, Francisco Vila, David Alonso, Alicia Prieto, María Jesús Martínez
{"title":"Fungal Enzymes for Saccharification of Gamma-Valerolactone-Pretreated White Birch Wood: Optimization of the Production of Talaromyces amestolkiae Cellulolytic Cocktail","authors":"Laura I. de Eugenio,&nbsp;Isabel de la Torre,&nbsp;Felipe de Salas,&nbsp;Francisco Vila,&nbsp;David Alonso,&nbsp;Alicia Prieto,&nbsp;María Jesús Martínez","doi":"10.1002/elsc.202400029","DOIUrl":null,"url":null,"abstract":"<p>Lignocellulosic biomass, the most abundant natural resource on earth, can be used for cellulosic ethanol production but requires a pretreatment to improve enzyme access to the polymeric sugars while obtaining value from the other components. γ-Valerolactone (GVL) is a promising candidate for biomass pretreatment since it is renewable and bio-based. In the present work, the effect of a pretreatment based on GVL on the enzymatic saccharification of white birch was evaluated at a laboratory scale and the importance of the washing procedure for the subsequent saccharification was demonstrated. Both the saccharification yield and the production of cellulosic ethanol were higher using a noncommercial enzyme crude from <i>Talaromyces amestolkiae</i> than with the commercial cocktail Cellic CTec2 from Novozymes. Furthermore, the production of extracellular cellulases by <i>T. amestolkiae</i> has been optimized in 2 L bioreactors, with improvements ranging from 40% to 75%. Finally, it was corroborated by isoelectric focus that optimization of cellulase secretion by <i>T. amestolkiae</i> did not affect the pattern production of the main β-glucosidases and endoglucanases secreted by this fungus.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202400029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202400029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lignocellulosic biomass, the most abundant natural resource on earth, can be used for cellulosic ethanol production but requires a pretreatment to improve enzyme access to the polymeric sugars while obtaining value from the other components. γ-Valerolactone (GVL) is a promising candidate for biomass pretreatment since it is renewable and bio-based. In the present work, the effect of a pretreatment based on GVL on the enzymatic saccharification of white birch was evaluated at a laboratory scale and the importance of the washing procedure for the subsequent saccharification was demonstrated. Both the saccharification yield and the production of cellulosic ethanol were higher using a noncommercial enzyme crude from Talaromyces amestolkiae than with the commercial cocktail Cellic CTec2 from Novozymes. Furthermore, the production of extracellular cellulases by T. amestolkiae has been optimized in 2 L bioreactors, with improvements ranging from 40% to 75%. Finally, it was corroborated by isoelectric focus that optimization of cellulase secretion by T. amestolkiae did not affect the pattern production of the main β-glucosidases and endoglucanases secreted by this fungus.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于γ-戊内酯预处理白桦木糖化的真菌酵素:塔拉酵母菌纤维素分解鸡尾酒的优化生产
木质纤维素生物质是地球上最丰富的自然资源,可用于生产纤维素乙醇,但需要进行预处理,以提高酶对聚合糖的利用率,同时从其他成分中获取价值。γ-戊内酯(GVL)是生物质预处理的理想候选物质,因为它是可再生的生物基。本研究在实验室规模上评估了基于 GVL 的预处理对白桦木酶法糖化的影响,并证明了洗涤程序对后续糖化的重要性。与诺维信公司的商品鸡尾酒 Cellic CTec2 相比,使用非商业性的羊角酵母菌酶粗品的糖化率和纤维素乙醇产量都更高。此外,在 2 升的生物反应器中,对羊角酵母菌生产胞外纤维素酶进行了优化,改进幅度在 40% 至 75% 之间。最后,等电聚焦法证实,优化 T. amestolkiae 的纤维素酶分泌并不影响该真菌分泌的主要 β-葡萄糖苷酶和内切葡聚糖酶的生产模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering in Life Sciences
Engineering in Life Sciences 工程技术-生物工程与应用微生物
CiteScore
6.40
自引率
3.70%
发文量
81
审稿时长
3 months
期刊介绍: Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.
期刊最新文献
Issue Information Cover Picture: Engineering in Life Sciences 11'24 Mechanical Microvibration Device Enhancing Immunohistochemistry Efficiency Issue Information Cover Picture: Engineering in Life Sciences 10'24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1