Yu Lu;Xiaowu Cai;Jian Lu;Longli Pan;Jianying Dang;Yafei Xie;Xupeng Wang;Bo Li
{"title":"A nMOS-R Cross-Coupled Level Shifter With High dV/dt Noise Immunity for 600-V High-Voltage Gate Driver IC","authors":"Yu Lu;Xiaowu Cai;Jian Lu;Longli Pan;Jianying Dang;Yafei Xie;Xupeng Wang;Bo Li","doi":"10.1109/TVLSI.2024.3417385","DOIUrl":null,"url":null,"abstract":"In digital integrated circuits with multiple power domains, level shifters (LSs) are essential circuit elements that can transform the voltage region from low to high. However, high-frequency gate drivers can generate hundreds of voltages per nanosecond noise (high dV/dt noise). Such high dV/dt noise can cause malfunction of a conventional pulse-triggered cross-coupled LS (CCLS) that is used to control the high-side nMOS switch. In this article, a novel LS with noise immunity is proposed and investigated. Compared with the conventional resistor load LS, the proposed circuit adopts nMOS-R cross-coupled (NRCC) LS, and realizes the selective filtering ability by exploiting the path that filters out the noise introduced by the dV/dt. The high-voltage gate drive integrated circuit (HVIC) is implemented using a 600 V silicon-on-insulator (SOI) BCD process. Analyses and experiments show that the proposed design can help the HVIC maintain a high common-mode transient immunity (CMTI) of up to 137 V/ns while allowing a negative VS swing down to -9.4 V under a 15 V supply voltage. Compared with the traditional HVIC with resistance load LS, the proposed novel HVIC with the NRCC LS improves the noise immunity of dV/dt by 182%.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"32 11","pages":"1993-2000"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10596101/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In digital integrated circuits with multiple power domains, level shifters (LSs) are essential circuit elements that can transform the voltage region from low to high. However, high-frequency gate drivers can generate hundreds of voltages per nanosecond noise (high dV/dt noise). Such high dV/dt noise can cause malfunction of a conventional pulse-triggered cross-coupled LS (CCLS) that is used to control the high-side nMOS switch. In this article, a novel LS with noise immunity is proposed and investigated. Compared with the conventional resistor load LS, the proposed circuit adopts nMOS-R cross-coupled (NRCC) LS, and realizes the selective filtering ability by exploiting the path that filters out the noise introduced by the dV/dt. The high-voltage gate drive integrated circuit (HVIC) is implemented using a 600 V silicon-on-insulator (SOI) BCD process. Analyses and experiments show that the proposed design can help the HVIC maintain a high common-mode transient immunity (CMTI) of up to 137 V/ns while allowing a negative VS swing down to -9.4 V under a 15 V supply voltage. Compared with the traditional HVIC with resistance load LS, the proposed novel HVIC with the NRCC LS improves the noise immunity of dV/dt by 182%.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.