{"title":"Performance evaluation of multi-satellite rainfall products for analyzing rainfall variability in Abaya–Chamo basin: Southern Ethiopia","authors":"Amba Shalishe, Tewelde Berihu, Yoseph Arba","doi":"10.1007/s12040-024-02336-w","DOIUrl":null,"url":null,"abstract":"<p>Understanding the rainfall variability is crucial for managing water resources and mitigating agricultural hazards, particularly in poorly gauged regions like the Abaya–Chamo basin. This study compares various satellite-derived rainfall products, including Climate Hazards Group Infrared Precipitation with Stations (CHIRPS), Tropical Applications of Meteorology using Satellite data and ground-based observations (TAMSAT), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), and Climate Hazards Group Infrared Precipitation (CHIRP), with observed rainfall data from 1990 to 2019. Accordingly, this study evaluates the performance of these satellite rainfall products using multiple metrics at daily and monthly scales. The correlation coefficient (CC), mean square error (MSE), Nash-Sutcliffe efficiency (NSE), percent of bias (PBIAS), mean absolute error (MAE), and categorical analysis metrics such as probability of detection (POD), false alarm ratio (FAR) and critical success index (CSI) indicators were applied to evaluate the accuracy of these products. Among them, the CHIRPS satellite product demonstrates superior agreement with observed data, with CC = 0.871 and NSE = 0.925, warranting its selection for further analysis of seasonal and annual rainfall variability. The coefficient of variation (CV) and precipitation concentration index (PCI) were applied to investigate rainfall variability. The study indicates that precipitation patterns in the Abaya–Chamo basin exhibit moderate to high variability throughout the year, with a CV ranging from 20–30%. This suggests substantial variability in annual rainfall within the region, in some instances where the variability exceeds 30%. Moreover, the southern and northern regions of the basin experience a consistent moderate to high variation in precipitation throughout the entire season, while the lowest variability was observed in the central part of the basin. These findings underscore the importance of satellite-derived rainfall data, particularly the CHIRPS product, in understanding spatiotemporal rainfall patterns and making informed decisions in water resource management. This research contributes in advancing our knowledge of rainfall variability in the Abaya–Chamo basin and underscores the utility of satellite data in regions lacking adequate ground-based monitoring.</p>","PeriodicalId":15609,"journal":{"name":"Journal of Earth System Science","volume":"25 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth System Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12040-024-02336-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the rainfall variability is crucial for managing water resources and mitigating agricultural hazards, particularly in poorly gauged regions like the Abaya–Chamo basin. This study compares various satellite-derived rainfall products, including Climate Hazards Group Infrared Precipitation with Stations (CHIRPS), Tropical Applications of Meteorology using Satellite data and ground-based observations (TAMSAT), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), and Climate Hazards Group Infrared Precipitation (CHIRP), with observed rainfall data from 1990 to 2019. Accordingly, this study evaluates the performance of these satellite rainfall products using multiple metrics at daily and monthly scales. The correlation coefficient (CC), mean square error (MSE), Nash-Sutcliffe efficiency (NSE), percent of bias (PBIAS), mean absolute error (MAE), and categorical analysis metrics such as probability of detection (POD), false alarm ratio (FAR) and critical success index (CSI) indicators were applied to evaluate the accuracy of these products. Among them, the CHIRPS satellite product demonstrates superior agreement with observed data, with CC = 0.871 and NSE = 0.925, warranting its selection for further analysis of seasonal and annual rainfall variability. The coefficient of variation (CV) and precipitation concentration index (PCI) were applied to investigate rainfall variability. The study indicates that precipitation patterns in the Abaya–Chamo basin exhibit moderate to high variability throughout the year, with a CV ranging from 20–30%. This suggests substantial variability in annual rainfall within the region, in some instances where the variability exceeds 30%. Moreover, the southern and northern regions of the basin experience a consistent moderate to high variation in precipitation throughout the entire season, while the lowest variability was observed in the central part of the basin. These findings underscore the importance of satellite-derived rainfall data, particularly the CHIRPS product, in understanding spatiotemporal rainfall patterns and making informed decisions in water resource management. This research contributes in advancing our knowledge of rainfall variability in the Abaya–Chamo basin and underscores the utility of satellite data in regions lacking adequate ground-based monitoring.
期刊介绍:
The Journal of Earth System Science, an International Journal, was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed ‘Journal of Earth System Science’.
The journal is highly inter-disciplinary and publishes scholarly research – new data, ideas, and conceptual advances – in Earth System Science. The focus is on the evolution of the Earth as a system: manuscripts describing changes of anthropogenic origin in a limited region are not considered unless they go beyond describing the changes to include an analysis of earth-system processes. The journal''s scope includes the solid earth (geosphere), the atmosphere, the hydrosphere (including cryosphere), and the biosphere; it also addresses related aspects of planetary and space sciences. Contributions pertaining to the Indian sub- continent and the surrounding Indian-Ocean region are particularly welcome. Given that a large number of manuscripts report either observations or model results for a limited domain, manuscripts intended for publication in JESS are expected to fulfill at least one of the following three criteria.
The data should be of relevance and should be of statistically significant size and from a region from where such data are sparse. If the data are from a well-sampled region, the data size should be considerable and advance our knowledge of the region.
A model study is carried out to explain observations reported either in the same manuscript or in the literature.
The analysis, whether of data or with models, is novel and the inferences advance the current knowledge.