{"title":"Plasma nitrogen fixation for plant cultivation with air‐derived dinitrogen pentoxide","authors":"Shouki Takeshi, Keisuke Takashima, Shota Sasaki, Atsushi Higashitani, Toshiro Kaneko","doi":"10.1002/ppap.202400096","DOIUrl":null,"url":null,"abstract":"The development of a nonconventional nitrogen fertilizer, which can be fixed in agricultural fields using decentralized renewable energy sources, presents a feasible solution for sustainable on‐site nitrogen fixation and fertilization. This study focuses on plasma‐generated dinitrogen pentoxide (N<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>) as a prospective mediator for the on‐site nitrogen fertilization, allowing nitrogen fertilization directly into culture media. Basal dinitrogen pentoxide fertilization demonstrated almost 100% dinitrogen pentoxide dissolution efficiency as nitrate in a culture medium and nitrogen fertilization effect on plant growth without explicit symptoms of damage. Top‐dressing of dinitrogen pentoxide was also an efficient method for transferring nitrogen into the soil as nitrate, which improved plant growth and suppressed nitrogen deficiency symptoms, while overdose caused adverse effects.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"64 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400096","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The development of a nonconventional nitrogen fertilizer, which can be fixed in agricultural fields using decentralized renewable energy sources, presents a feasible solution for sustainable on‐site nitrogen fixation and fertilization. This study focuses on plasma‐generated dinitrogen pentoxide (N2O5) as a prospective mediator for the on‐site nitrogen fertilization, allowing nitrogen fertilization directly into culture media. Basal dinitrogen pentoxide fertilization demonstrated almost 100% dinitrogen pentoxide dissolution efficiency as nitrate in a culture medium and nitrogen fertilization effect on plant growth without explicit symptoms of damage. Top‐dressing of dinitrogen pentoxide was also an efficient method for transferring nitrogen into the soil as nitrate, which improved plant growth and suppressed nitrogen deficiency symptoms, while overdose caused adverse effects.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.