{"title":"Research Progress on Bio-inspired Flapping-Wing Rotor Micro Aerial Vehicle Development","authors":"Yingjun Pan, Shijun Guo, Xun Huang","doi":"10.1007/s42235-024-00521-7","DOIUrl":null,"url":null,"abstract":"<div><p>Flapping-wing rotor (FWR) is an innovative bio-inspired micro aerial vehicle capable of vertical take-off and landing. This unique design combines active flapping motion and passive wing rotation around a vertical central shaft to enhance aerodynamic performance. The research on FWR, though relatively new, has contributed to 6% of core journal publications in the micro aerial vehicle field over the past two decades. This paper presents the first comprehensive review of FWR, analysing the current state of the art, key advances, challenges, and future research directions. The review highlights FWR’s distinctive kinematics and aerodynamic superiority compared to traditional flapping wings, fixed wings, and rotary wings, discussing recent breakthroughs in efficient, passive wing pitching and asymmetric stroke amplitude for lift enhancement. Recent experiments and remote-controlled take-off and hovering tests of single and dual-motor FWR models have showcased their effectiveness. The review compares FWR flight performance with well-developed insect-like flapping-wing micro aerial vehicles as the technology readiness level progresses from laboratory to outdoor flight testing, advancing from the initial flight of a 2.6 g prototype to the current free flight of a 60-gram model. The review also presents ongoing research in bionic flexible wing structures, flight stability and control, and transitioning between hovering and cruise flight modes for an FWR, setting the stage for potential applications.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 4","pages":"1621 - 1643"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42235-024-00521-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00521-7","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flapping-wing rotor (FWR) is an innovative bio-inspired micro aerial vehicle capable of vertical take-off and landing. This unique design combines active flapping motion and passive wing rotation around a vertical central shaft to enhance aerodynamic performance. The research on FWR, though relatively new, has contributed to 6% of core journal publications in the micro aerial vehicle field over the past two decades. This paper presents the first comprehensive review of FWR, analysing the current state of the art, key advances, challenges, and future research directions. The review highlights FWR’s distinctive kinematics and aerodynamic superiority compared to traditional flapping wings, fixed wings, and rotary wings, discussing recent breakthroughs in efficient, passive wing pitching and asymmetric stroke amplitude for lift enhancement. Recent experiments and remote-controlled take-off and hovering tests of single and dual-motor FWR models have showcased their effectiveness. The review compares FWR flight performance with well-developed insect-like flapping-wing micro aerial vehicles as the technology readiness level progresses from laboratory to outdoor flight testing, advancing from the initial flight of a 2.6 g prototype to the current free flight of a 60-gram model. The review also presents ongoing research in bionic flexible wing structures, flight stability and control, and transitioning between hovering and cruise flight modes for an FWR, setting the stage for potential applications.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.