{"title":"Flexible localization protocol for underwater wireless sensor networks using hybrid reward evaluation scheme","authors":"Rupinder Kaur, Sonia Goyal","doi":"10.1007/s12083-024-01758-z","DOIUrl":null,"url":null,"abstract":"<p>Underwater Wireless Sensor Networks (UWSNs) must recognize sensor nodes and estimate their locations. A reliable underwater data forwarding relay is difficult to find in the acoustic communication environment. Underwater sensor node localization research has yet to accomplish accuracy, propagation error, restricted coverage, and QoS. A novel solution for static and dynamic UWSNs called the Reward-based distance vector Hop Localization (RDVHL) protocol is proposed. The reward for each underwater sensor node is computed periodically using the different reward measures in RDVHL. RDVHL first divides the deployed UWSNs dynamically into several clusters. Then Anchor Nodes (AN) are localized for each cluster using the reward measures periodically. After localizing the AN, they broadcast the localization information to the ordinary sensor nodes. The ordinary nodes are localized during the route formation for reliable data transmission using periodically computed reward scores. The correct localization of the sensor nodes enables the fast transmission of the underwater data from the source to the intended sink nodes. The proposed reward-based approach achieves accurate sensor node localization and reduces void communication and collisions in the acoustic communication channels. The RDVHL protocol outperforms the state-of-the-art in average throughput, average latency, average accuracy, and average energy consumption. RDVHL throughput increases by 12.54%. The average energy consumption drops 12.82%, localization inaccuracy drops 29.44%, and communication latency drops 3.72%.</p>","PeriodicalId":49313,"journal":{"name":"Peer-To-Peer Networking and Applications","volume":"61 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peer-To-Peer Networking and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12083-024-01758-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Underwater Wireless Sensor Networks (UWSNs) must recognize sensor nodes and estimate their locations. A reliable underwater data forwarding relay is difficult to find in the acoustic communication environment. Underwater sensor node localization research has yet to accomplish accuracy, propagation error, restricted coverage, and QoS. A novel solution for static and dynamic UWSNs called the Reward-based distance vector Hop Localization (RDVHL) protocol is proposed. The reward for each underwater sensor node is computed periodically using the different reward measures in RDVHL. RDVHL first divides the deployed UWSNs dynamically into several clusters. Then Anchor Nodes (AN) are localized for each cluster using the reward measures periodically. After localizing the AN, they broadcast the localization information to the ordinary sensor nodes. The ordinary nodes are localized during the route formation for reliable data transmission using periodically computed reward scores. The correct localization of the sensor nodes enables the fast transmission of the underwater data from the source to the intended sink nodes. The proposed reward-based approach achieves accurate sensor node localization and reduces void communication and collisions in the acoustic communication channels. The RDVHL protocol outperforms the state-of-the-art in average throughput, average latency, average accuracy, and average energy consumption. RDVHL throughput increases by 12.54%. The average energy consumption drops 12.82%, localization inaccuracy drops 29.44%, and communication latency drops 3.72%.
期刊介绍:
The aim of the Peer-to-Peer Networking and Applications journal is to disseminate state-of-the-art research and development results in this rapidly growing research area, to facilitate the deployment of P2P networking and applications, and to bring together the academic and industry communities, with the goal of fostering interaction to promote further research interests and activities, thus enabling new P2P applications and services. The journal not only addresses research topics related to networking and communications theory, but also considers the standardization, economic, and engineering aspects of P2P technologies, and their impacts on software engineering, computer engineering, networked communication, and security.
The journal serves as a forum for tackling the technical problems arising from both file sharing and media streaming applications. It also includes state-of-the-art technologies in the P2P security domain.
Peer-to-Peer Networking and Applications publishes regular papers, tutorials and review papers, case studies, and correspondence from the research, development, and standardization communities. Papers addressing system, application, and service issues are encouraged.