Comparative Study of Immobilized Biolipasa-R for Second Generation Biodiesel Production from an Acid Oil.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-11-04 Epub Date: 2024-09-03 DOI:10.1002/cbic.202400514
Androniki Spanou, Nektaria C Liakouli, Christina Fiotaki, Ioannis V Pavlidis
{"title":"Comparative Study of Immobilized Biolipasa-R for Second Generation Biodiesel Production from an Acid Oil.","authors":"Androniki Spanou, Nektaria C Liakouli, Christina Fiotaki, Ioannis V Pavlidis","doi":"10.1002/cbic.202400514","DOIUrl":null,"url":null,"abstract":"<p><p>The primary objective of this work is to develop a sustainable biocatalytic transesterification process for low-grade oils, aligning with EU green technology requirements for the shift to second generation biodiesel. Thus, we investigated the immobilization and subsequent application of the lipase Biolipasa-R on transesterification processes to produce fatty acid methyl esters (FAMEs) from both a sunflower oil and an acid oil which is a bioproduct of the biodiesel industry. The lipase was immobilized on biomaterials, such as diatomaceous earth, with a yield of 60 %, and commercial carriers such as methacrylic resins with a yield of 100 %. The enzyme demonstrated superior activity when immobilized on diatomaceous earth, particularly in reactions involving the acid oil, outperforming the benchmark enzyme Novozym® 435 (95.1 % and 35 % conversion respectively). This work highlights the potential of Biolipasa-R as a cost-effective and efficient biocatalyst for biodiesel production and emphasizes the environmental benefits of utilizing industrial byproducts and eco-friendly immobilization techniques. The findings suggest that Biolipasa-R is a promising candidate for industrial applications in biodiesel production, offering a sustainable solution for waste management and energy generation.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The primary objective of this work is to develop a sustainable biocatalytic transesterification process for low-grade oils, aligning with EU green technology requirements for the shift to second generation biodiesel. Thus, we investigated the immobilization and subsequent application of the lipase Biolipasa-R on transesterification processes to produce fatty acid methyl esters (FAMEs) from both a sunflower oil and an acid oil which is a bioproduct of the biodiesel industry. The lipase was immobilized on biomaterials, such as diatomaceous earth, with a yield of 60 %, and commercial carriers such as methacrylic resins with a yield of 100 %. The enzyme demonstrated superior activity when immobilized on diatomaceous earth, particularly in reactions involving the acid oil, outperforming the benchmark enzyme Novozym® 435 (95.1 % and 35 % conversion respectively). This work highlights the potential of Biolipasa-R as a cost-effective and efficient biocatalyst for biodiesel production and emphasizes the environmental benefits of utilizing industrial byproducts and eco-friendly immobilization techniques. The findings suggest that Biolipasa-R is a promising candidate for industrial applications in biodiesel production, offering a sustainable solution for waste management and energy generation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用酸性油生产第二代生物柴油的固定化生物笠-R 比较研究
这项工作的主要目的是为低级油开发一种可持续的生物催化酯交换工艺,以符合欧盟关于向第二代生物柴油转变的绿色技术要求。因此,我们研究了脂肪酶 Biolipasa-R 在酯交换过程中的固定化和后续应用,以便从葵花籽油和酸性油(生物柴油工业的一种生物产品)中生产脂肪酸甲酯(FAMEs)。脂肪酶固定在硅藻土等生物材料上的产量为 60%,固定在甲基丙烯酸树脂等商业载体上的产量为 100%。该酶固定在硅藻土上时表现出更高的活性,特别是在涉及酸性油的反应中,其活性优于基准酶 Novozym® 435(转化率分别为 95.1%和 35%)。这项工作突出了 Biolipasa-R 作为生物柴油生产中一种经济高效的生物催化剂的潜力,并强调了利用工业副产品和生态友好型固定化技术的环境效益。研究结果表明,Biolipasa-R 在生物柴油生产的工业应用中是一种很有前途的候选物质,为废物管理和能源生产提供了一种可持续的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1