Influence of the CYP1A2 c.-163 A > C polymorphism in the effect of caffeine on fat oxidation during exercise: a pilot randomized, double-blind, crossover, placebo-controlled trial.
David Varillas-Delgado, Juan Del Coso, Alejandro Muñoz, Millán Aguilar-Navarro, Jorge Gutierrez-Hellin
{"title":"Influence of the CYP1A2 c.<sup>-163</sup> A > C polymorphism in the effect of caffeine on fat oxidation during exercise: a pilot randomized, double-blind, crossover, placebo-controlled trial.","authors":"David Varillas-Delgado, Juan Del Coso, Alejandro Muñoz, Millán Aguilar-Navarro, Jorge Gutierrez-Hellin","doi":"10.1007/s00394-024-03454-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The aim of this study was to determine the influence of the CYP1A2 c.-163 A > C (rs762551) polymorphism on the effect of oral caffeine intake on fat oxidation during exercise.</p><p><strong>Methods: </strong>Using a pilot randomized, double-blind, crossover, placebo-controlled trial, 32 young and healthy individuals (women = 14, men = 18) performed an incremental test on a cycle ergometer with 3-min stages at workloads from 30 to 70% of maximal oxygen uptake (VO<sub>2</sub>max). Participants performed this test after the ingestion of (a) placebo; (b) 3 mg/kg of caffeine; (c) 6 mg/kg of caffeine. Fat oxidation rate during exercise was measured by indirect calorimetry. The influence of the CYP1A2 c.-163 A > C polymorphism in the effect of caffeine on fat oxidation rates during exercise was established with a three-way ANOVA (substance × genotype × intensity).</p><p><strong>Results: </strong>Eight participants were genotyped as AA, 18 participants were CA heterozygotes, and 6 participants were CC. There was a main effect of substance (F = 3.348, p = 0.050) on fat oxidation rates during exercise with no genotype effect (F = 0.158, p = 0.959). The post hoc analysis revealed that, in comparison to the placebo, 3 and 6 mg/kg of caffeine increased fat oxidation at 40-50% VO<sub>2</sub>max in AA (all p < 0.050) and 50-60% VO<sub>2</sub>max in CA and CC participants (all p < 0.050).</p><p><strong>Conclusion: </strong>Oral intake of 3 and 6 mg/kg of caffeine increased fat oxidation rate during aerobic exercise in individuals with AA, CA and CC genotypes. This suggests that the effect of caffeine to enhance fat oxidation during exercise is not influenced by the CYP1A2 c.-163 A > C polymorphism.</p><p><strong>Trial registration: </strong>The study was registered on clinicaltrials.gov with ID: NCT05975489.</p>","PeriodicalId":12030,"journal":{"name":"European Journal of Nutrition","volume":" ","pages":"2697-2708"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00394-024-03454-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The aim of this study was to determine the influence of the CYP1A2 c.-163 A > C (rs762551) polymorphism on the effect of oral caffeine intake on fat oxidation during exercise.
Methods: Using a pilot randomized, double-blind, crossover, placebo-controlled trial, 32 young and healthy individuals (women = 14, men = 18) performed an incremental test on a cycle ergometer with 3-min stages at workloads from 30 to 70% of maximal oxygen uptake (VO2max). Participants performed this test after the ingestion of (a) placebo; (b) 3 mg/kg of caffeine; (c) 6 mg/kg of caffeine. Fat oxidation rate during exercise was measured by indirect calorimetry. The influence of the CYP1A2 c.-163 A > C polymorphism in the effect of caffeine on fat oxidation rates during exercise was established with a three-way ANOVA (substance × genotype × intensity).
Results: Eight participants were genotyped as AA, 18 participants were CA heterozygotes, and 6 participants were CC. There was a main effect of substance (F = 3.348, p = 0.050) on fat oxidation rates during exercise with no genotype effect (F = 0.158, p = 0.959). The post hoc analysis revealed that, in comparison to the placebo, 3 and 6 mg/kg of caffeine increased fat oxidation at 40-50% VO2max in AA (all p < 0.050) and 50-60% VO2max in CA and CC participants (all p < 0.050).
Conclusion: Oral intake of 3 and 6 mg/kg of caffeine increased fat oxidation rate during aerobic exercise in individuals with AA, CA and CC genotypes. This suggests that the effect of caffeine to enhance fat oxidation during exercise is not influenced by the CYP1A2 c.-163 A > C polymorphism.
Trial registration: The study was registered on clinicaltrials.gov with ID: NCT05975489.
期刊介绍:
The European Journal of Nutrition publishes original papers, reviews, and short communications in the nutritional sciences. The manuscripts submitted to the European Journal of Nutrition should have their major focus on the impact of nutrients and non-nutrients on
immunology and inflammation,
gene expression,
metabolism,
chronic diseases, or
carcinogenesis,
or a major focus on
epidemiology, including intervention studies with healthy subjects and with patients,
biofunctionality of food and food components, or
the impact of diet on the environment.