Shubhashini Oza, Katherine Y Bell, Zhiliang Xu, Yifei Wang, Martha J M Wells, John W Norton, Lloyd J Winchell, Qingguo Huang, Hui Li
{"title":"Surveillance of PFAS in sludge and biosolids at 12 water resource recovery facilities.","authors":"Shubhashini Oza, Katherine Y Bell, Zhiliang Xu, Yifei Wang, Martha J M Wells, John W Norton, Lloyd J Winchell, Qingguo Huang, Hui Li","doi":"10.1002/jeq2.20595","DOIUrl":null,"url":null,"abstract":"<p><p>Per- and polyfluoroalkyl substances (PFAS) are refractory anthropogenic chemicals and current treatment processes at municipal water resource recovery facilities (WRRFs) cannot efficiently degrade them, hence, these chemicals cycle through the environment. Certain PFAS can be concentrated in biosolids from WRRFs and are commonly land applied for beneficial reuse. Given recent advances in measurement of PFAS, documentation of the range of concentrations in pre-stabilized sludge and stabilized biosolids is critical to evaluating treatment best practices and assessing potential human health and ecological risks. In this study, pre-stabilized sludge and post-stabilized biosolids samples were collected from 12 major WRRFs across the United States. PFAS were analyzed using Environmental Protection Agency (EPA) Method SW846-3500C/537.1, and Draft EPA Method 1633, by one commercial laboratory and two university research laboratories, respectively. Results comparison among laboratories demonstrated statistical differences in PFAS concentrations among split samples. For example, 5:3 FTCA (fluorotelomer carboxylic acid) concentrations in post-stabilized sludge at Lab 1 were measured at 21 ng/g (dry), while they were detected at 151 ng/g (dry) in Lab 3. Further, higher PFAS concentrations were observed in post-stabilized biosolids compared to pre-stabilized sludges, regardless of the laboratory or analysis method, even when solids destruction through solids stabilization was considered. Further research is required to refine methods for analyses of PFAS in sludge and biosolids samples from WRRFs prior to being used for development of regulatory actions as well as understanding how various treatment protocols could impact concentrations of PFAS in land-applied biosolids.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/jeq2.20595","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) are refractory anthropogenic chemicals and current treatment processes at municipal water resource recovery facilities (WRRFs) cannot efficiently degrade them, hence, these chemicals cycle through the environment. Certain PFAS can be concentrated in biosolids from WRRFs and are commonly land applied for beneficial reuse. Given recent advances in measurement of PFAS, documentation of the range of concentrations in pre-stabilized sludge and stabilized biosolids is critical to evaluating treatment best practices and assessing potential human health and ecological risks. In this study, pre-stabilized sludge and post-stabilized biosolids samples were collected from 12 major WRRFs across the United States. PFAS were analyzed using Environmental Protection Agency (EPA) Method SW846-3500C/537.1, and Draft EPA Method 1633, by one commercial laboratory and two university research laboratories, respectively. Results comparison among laboratories demonstrated statistical differences in PFAS concentrations among split samples. For example, 5:3 FTCA (fluorotelomer carboxylic acid) concentrations in post-stabilized sludge at Lab 1 were measured at 21 ng/g (dry), while they were detected at 151 ng/g (dry) in Lab 3. Further, higher PFAS concentrations were observed in post-stabilized biosolids compared to pre-stabilized sludges, regardless of the laboratory or analysis method, even when solids destruction through solids stabilization was considered. Further research is required to refine methods for analyses of PFAS in sludge and biosolids samples from WRRFs prior to being used for development of regulatory actions as well as understanding how various treatment protocols could impact concentrations of PFAS in land-applied biosolids.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.