CD66b+/CD68+ circulating extracellular vesicles, lactate dehydrogenase and neutrophil-to-lymphocyte ratio can differentiate coronavirus disease 2019 severity during and after infection

IF 15.5 1区 医学 Q1 CELL BIOLOGY Journal of Extracellular Vesicles Pub Date : 2024-07-15 DOI:10.1002/jev2.12456
Rosa Suades, Maria Francesca Greco, Paula Prieto, Teresa Padró, Yvan Devaux, Pere Domingo, Lina Badimon
{"title":"CD66b+/CD68+ circulating extracellular vesicles, lactate dehydrogenase and neutrophil-to-lymphocyte ratio can differentiate coronavirus disease 2019 severity during and after infection","authors":"Rosa Suades,&nbsp;Maria Francesca Greco,&nbsp;Paula Prieto,&nbsp;Teresa Padró,&nbsp;Yvan Devaux,&nbsp;Pere Domingo,&nbsp;Lina Badimon","doi":"10.1002/jev2.12456","DOIUrl":null,"url":null,"abstract":"<p>Coronavirus disease 2019 (COVID-19) has been a major public health burden. We hypothesised that circulating extracellular vesicles (cEVs), key players in health and disease, could trace the cell changes during COVID-19 infection and recovery. Therefore, we studied the temporal trend of cEV and inflammatory marker levels in plasma samples of COVID-19 patients that were collected within 24 h of patient admission (baseline, <i>n</i> = 80) and after hospital discharge at day-90 post-admission (<i>n</i> = 59). Inflammatory markers were measured by standard biochemical methods. cEVs were quantitatively and phenotypically characterized by high-sensitivity nano flow cytometry. In patients recovered from COVID-19 lower levels of inflammatory markers were detected. cEVs from vascular (endothelial cells) and blood (platelets, distinct immune subsets) cells were significantly reduced at day-90 compared to admission levels, a pattern also observed for cEVs from progenitor, perivascular and epithelial cells. The best discriminatory power for COVID-19 severity was found for inflammatory markers lactate dehydrogenase and neutrophil-to-lymphocyte ratio and for granulocyte/macrophage-released CD66b<sup>+</sup>/CD68<sup>+</sup>-cEVs. Albeit inflammatory markers were good indicators of systemic inflammatory response and discriminators of COVID-19 remission, they do not completely reveal cell stress and organ damage states. cEVs reaching baseline pre-infection levels at 90 days post-infection in recovered patients discriminate parental cells affected by disease.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"13 7","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jev2.12456","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.12456","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Coronavirus disease 2019 (COVID-19) has been a major public health burden. We hypothesised that circulating extracellular vesicles (cEVs), key players in health and disease, could trace the cell changes during COVID-19 infection and recovery. Therefore, we studied the temporal trend of cEV and inflammatory marker levels in plasma samples of COVID-19 patients that were collected within 24 h of patient admission (baseline, n = 80) and after hospital discharge at day-90 post-admission (n = 59). Inflammatory markers were measured by standard biochemical methods. cEVs were quantitatively and phenotypically characterized by high-sensitivity nano flow cytometry. In patients recovered from COVID-19 lower levels of inflammatory markers were detected. cEVs from vascular (endothelial cells) and blood (platelets, distinct immune subsets) cells were significantly reduced at day-90 compared to admission levels, a pattern also observed for cEVs from progenitor, perivascular and epithelial cells. The best discriminatory power for COVID-19 severity was found for inflammatory markers lactate dehydrogenase and neutrophil-to-lymphocyte ratio and for granulocyte/macrophage-released CD66b+/CD68+-cEVs. Albeit inflammatory markers were good indicators of systemic inflammatory response and discriminators of COVID-19 remission, they do not completely reveal cell stress and organ damage states. cEVs reaching baseline pre-infection levels at 90 days post-infection in recovered patients discriminate parental cells affected by disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CD66b+/CD68+循环细胞外囊泡、乳酸脱氢酶和中性粒细胞与淋巴细胞的比率可在感染期间和感染后区分冠状病毒病2019年最新注册送彩金的严重程度。
冠状病毒病 2019(COVID-19)一直是公共卫生的一大负担。我们假设,循环细胞外囊泡(cEVs)作为健康和疾病的关键角色,可以追踪 COVID-19 感染和恢复期间的细胞变化。因此,我们研究了 COVID-19 患者入院后 24 小时内(基线,n = 80)和出院后第 90 天(n = 59)采集的血浆样本中 cEV 和炎症标志物水平的时间趋势。采用高灵敏度纳米流式细胞术对 cEV 进行定量和表型鉴定。与入院时的水平相比,血管(内皮细胞)和血液(血小板、不同的免疫亚群)细胞中的 cEVs 在第 90 天显著减少,祖细胞、血管周围细胞和上皮细胞中的 cEVs 也观察到了这种模式。炎症标志物乳酸脱氢酶和中性粒细胞与淋巴细胞比率以及粒细胞/巨噬细胞释放的 CD66b+/CD68+-cEVs 对 COVID-19 严重程度的判别能力最强。尽管炎症标志物是全身炎症反应的良好指标,也是 COVID-19 缓解的鉴别指标,但它们并不能完全揭示细胞应激和器官损伤状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Extracellular Vesicles
Journal of Extracellular Vesicles Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
27.30
自引率
4.40%
发文量
115
审稿时长
12 weeks
期刊介绍: The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies. The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.
期刊最新文献
Extracellular vesicles containing SARS-CoV-2 proteins are associated with multi-organ dysfunction and worse outcomes in patients with severe COVID-19 Efficient enzyme-free isolation of brain-derived extracellular vesicles Hypoxia and TNF-alpha modulate extracellular vesicle release from human induced pluripotent stem cell-derived cardiomyocytes PlexinA1 (PLXNA1) as a novel scaffold protein for the engineering of extracellular vesicles A switch from lysosomal degradation to secretory autophagy initiates osteogenic bone metastasis in prostate cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1