Intricate interplay between cell metabolism and necroptosis regulation in metabolic dysfunction-associated steatotic liver disease: A narrative review

IF 10.8 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM Metabolism: clinical and experimental Pub Date : 2024-07-14 DOI:10.1016/j.metabol.2024.155975
Marta Bento Afonso , Jan Caira David , Mariana Isabel Alves , André Anastácio Santos , Gonçalo Campino , Vlad Ratziu , Jérémie Gautheron , Cecília Maria Pereira Rodrigues
{"title":"Intricate interplay between cell metabolism and necroptosis regulation in metabolic dysfunction-associated steatotic liver disease: A narrative review","authors":"Marta Bento Afonso ,&nbsp;Jan Caira David ,&nbsp;Mariana Isabel Alves ,&nbsp;André Anastácio Santos ,&nbsp;Gonçalo Campino ,&nbsp;Vlad Ratziu ,&nbsp;Jérémie Gautheron ,&nbsp;Cecília Maria Pereira Rodrigues","doi":"10.1016/j.metabol.2024.155975","DOIUrl":null,"url":null,"abstract":"<div><p>Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), encompasses a progressive spectrum of liver conditions, ranging from steatosis to metabolic dysfunction-associated steatohepatitis, characterised by hepatocellular death and inflammation, potentially progressing to cirrhosis and/or liver cancer. In both experimental and human MASLD, necroptosis-a regulated immunogenic necrotic cell death pathway-is triggered, yet its exact role in disease pathogenesis remains unclear. Noteworthy, necroptosis-related signalling pathways are emerging as key players in metabolic reprogramming, including lipid and mitochondrial metabolism. Additionally, metabolic dysregulation is a well-established contributor to MASLD development and progression. This review explores the intricate interplay between cell metabolism and necroptosis regulation and its impact on MASLD pathogenesis. Understanding these cellular events may offer new insights into the complexity of MASLD pathophysiology, potentially uncovering therapeutic opportunities and unforeseen metabolic consequences of targeting necroptosis.</p></div>","PeriodicalId":18694,"journal":{"name":"Metabolism: clinical and experimental","volume":"158 ","pages":"Article 155975"},"PeriodicalIF":10.8000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0026049524002026/pdfft?md5=e60fb78b8210753a78a7e626301318b8&pid=1-s2.0-S0026049524002026-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolism: clinical and experimental","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026049524002026","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), encompasses a progressive spectrum of liver conditions, ranging from steatosis to metabolic dysfunction-associated steatohepatitis, characterised by hepatocellular death and inflammation, potentially progressing to cirrhosis and/or liver cancer. In both experimental and human MASLD, necroptosis-a regulated immunogenic necrotic cell death pathway-is triggered, yet its exact role in disease pathogenesis remains unclear. Noteworthy, necroptosis-related signalling pathways are emerging as key players in metabolic reprogramming, including lipid and mitochondrial metabolism. Additionally, metabolic dysregulation is a well-established contributor to MASLD development and progression. This review explores the intricate interplay between cell metabolism and necroptosis regulation and its impact on MASLD pathogenesis. Understanding these cellular events may offer new insights into the complexity of MASLD pathophysiology, potentially uncovering therapeutic opportunities and unforeseen metabolic consequences of targeting necroptosis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
代谢功能障碍相关脂肪性肝病中细胞代谢与坏死调节之间错综复杂的相互作用:综述。
代谢功能障碍相关性脂肪性肝病(MASLD)以前称为非酒精性脂肪性肝病(NAFLD),是一种渐进性肝病,从脂肪变性到代谢功能障碍相关性脂肪性肝炎,其特点是肝细胞坏死和炎症,有可能发展为肝硬化和/或肝癌。在实验性和人类 MASLD 中,坏死细胞增多症--一种受调节的免疫性坏死细胞死亡途径--都会被触发,但它在疾病发病机制中的确切作用仍不清楚。值得注意的是,与坏死相关的信号通路正在成为代谢重编程(包括脂质和线粒体代谢)的关键参与者。此外,代谢失调也是导致 MASLD 发病和进展的一个公认因素。本综述探讨了细胞代谢和坏死调控之间错综复杂的相互作用及其对 MASLD 发病机制的影响。了解这些细胞事件可为了解 MASLD 病理生理学的复杂性提供新的视角,并有可能发现治疗机会和针对坏死的不可预见的代谢后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolism: clinical and experimental
Metabolism: clinical and experimental 医学-内分泌学与代谢
CiteScore
18.90
自引率
3.10%
发文量
310
审稿时长
16 days
期刊介绍: Metabolism upholds research excellence by disseminating high-quality original research, reviews, editorials, and commentaries covering all facets of human metabolism. Consideration for publication in Metabolism extends to studies in humans, animal, and cellular models, with a particular emphasis on work demonstrating strong translational potential. The journal addresses a range of topics, including: - Energy Expenditure and Obesity - Metabolic Syndrome, Prediabetes, and Diabetes - Nutrition, Exercise, and the Environment - Genetics and Genomics, Proteomics, and Metabolomics - Carbohydrate, Lipid, and Protein Metabolism - Endocrinology and Hypertension - Mineral and Bone Metabolism - Cardiovascular Diseases and Malignancies - Inflammation in metabolism and immunometabolism
期刊最新文献
The role of IL-1 family cytokines in diabetic cardiomyopathy. Reducing the global prevalence of cardiometabolic risk factors: a bet worth winning Bilirubin bioconversion to urobilin in the gut-liver-kidney axis: A biomarker for insulin resistance in the Cardiovascular-Kidney-Metabolic (CKM) Syndrome. An updated overview on hepatocellular carcinoma in patients with Metabolic dysfunction-Associated Steatotic Liver Disease: Trends, pathophysiology and risk-based surveillance Accurate non-invasive detection of MASH with fibrosis F2-F3 using a lightweight machine learning model with minimal clinical and metabolomic variables.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1