Global Highly Cited Publication Trends and Research Hotspots in Osteoporosis and Bone Metabolic Cells: A Bibliometric and Visualization Analysis from 2013 to 2023.
{"title":"Global Highly Cited Publication Trends and Research Hotspots in Osteoporosis and Bone Metabolic Cells: A Bibliometric and Visualization Analysis from 2013 to 2023.","authors":"Lingshan Ye, Zhen Hua, Xinxin Ding, Jianwei Wang","doi":"10.2174/0118715303300989240702043834","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bone metabolic diseases such as osteoporosis are caused by disruption of the metabolic balance between osteoblasts and osteoclasts. Thousands of papers have been published on osteoporosis and bone metabolizing cells. The purpose of this study is to draw the publication trend of highly cited literature in this field through bibliometrics and to explore the research hotspot analysis.</p><p><strong>Objective: </strong>This paper provides a comprehensive analysis of the impact of countries/regions, research institutions, authors, keywords, relevant journals, and references in the field of osteoporosis and bone metabolic cells research, with a specific focus on the theme of \"Osteoporosis and bone metabolic cells\". Furthermore, utilizing bibliometric methods, the study aims to offer valuable insights and references for future research endeavors, as well as clinical prevention and treatment strategies in this domain.</p><p><strong>Methods: </strong>The Web of Science [WOS] Core Collection database was examined in order to identify articles with high citation counts from 2013 to 31 October 2023. The citation counts, authors, year of publication, source, journal, geographical origin, subject, article type, and level of evidence were further analyzed using the R bibliometric package. The VOSviewer software was utilized to visualize word co-occurrence in a total of 251 articles.</p><p><strong>Results: </strong>Our search strategy included 251 highly cited articles published between 2013 and 2023 in the field of osteoporosis and bone metabolic cells. The number of publications in this field remains consistently high, indicating ongoing research interest. Notably, the United States has made significant achievements and contributions in this area. Xie Hui, Cao Xu, and Goodman, Stewart are among the main contributors to these advancements. NATURE MEDICINE has the highest journal impact factor of 82.9, highlighting its prominence. The JOURNAL OF BONE AND MINERAL RESEARCH ranks first with 1,322 citations. Keyword research topics in this field include osteoclast differentiation, osteoblast differentiation, and mesenchymal stem cells. Through citation analysis, we found that 195 articles have been cited more than 100 times, demonstrating their significance and impact.</p><p><strong>Conclusion: </strong>This study analyzed the relationship between osteoporosis and bone metabolic cells using a bibliometric method. The results of these analyses can help researchers gain a more direct and scientific understanding of trends in the field. Additionally, it can provide guidance in identifying hot research directions and offer new ideas for the prevention and treatment of osteoporosis.</p>","PeriodicalId":94316,"journal":{"name":"Endocrine, metabolic & immune disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine, metabolic & immune disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715303300989240702043834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Bone metabolic diseases such as osteoporosis are caused by disruption of the metabolic balance between osteoblasts and osteoclasts. Thousands of papers have been published on osteoporosis and bone metabolizing cells. The purpose of this study is to draw the publication trend of highly cited literature in this field through bibliometrics and to explore the research hotspot analysis.
Objective: This paper provides a comprehensive analysis of the impact of countries/regions, research institutions, authors, keywords, relevant journals, and references in the field of osteoporosis and bone metabolic cells research, with a specific focus on the theme of "Osteoporosis and bone metabolic cells". Furthermore, utilizing bibliometric methods, the study aims to offer valuable insights and references for future research endeavors, as well as clinical prevention and treatment strategies in this domain.
Methods: The Web of Science [WOS] Core Collection database was examined in order to identify articles with high citation counts from 2013 to 31 October 2023. The citation counts, authors, year of publication, source, journal, geographical origin, subject, article type, and level of evidence were further analyzed using the R bibliometric package. The VOSviewer software was utilized to visualize word co-occurrence in a total of 251 articles.
Results: Our search strategy included 251 highly cited articles published between 2013 and 2023 in the field of osteoporosis and bone metabolic cells. The number of publications in this field remains consistently high, indicating ongoing research interest. Notably, the United States has made significant achievements and contributions in this area. Xie Hui, Cao Xu, and Goodman, Stewart are among the main contributors to these advancements. NATURE MEDICINE has the highest journal impact factor of 82.9, highlighting its prominence. The JOURNAL OF BONE AND MINERAL RESEARCH ranks first with 1,322 citations. Keyword research topics in this field include osteoclast differentiation, osteoblast differentiation, and mesenchymal stem cells. Through citation analysis, we found that 195 articles have been cited more than 100 times, demonstrating their significance and impact.
Conclusion: This study analyzed the relationship between osteoporosis and bone metabolic cells using a bibliometric method. The results of these analyses can help researchers gain a more direct and scientific understanding of trends in the field. Additionally, it can provide guidance in identifying hot research directions and offer new ideas for the prevention and treatment of osteoporosis.