{"title":"Neural and spectral operator surrogates: unified construction and expression rate bounds","authors":"Lukas Herrmann, Christoph Schwab, Jakob Zech","doi":"10.1007/s10444-024-10171-2","DOIUrl":null,"url":null,"abstract":"<div><p>Approximation rates are analyzed for deep surrogates of maps between infinite-dimensional function spaces, arising, e.g., as data-to-solution maps of linear and nonlinear partial differential equations. Specifically, we study approximation rates for <i>deep neural operator</i> and <i>generalized polynomial chaos (gpc) Operator</i> surrogates for nonlinear, holomorphic maps between infinite-dimensional, separable Hilbert spaces. Operator in- and outputs from function spaces are assumed to be parametrized by stable, affine representation systems. Admissible representation systems comprise orthonormal bases, Riesz bases, or suitable tight frames of the spaces under consideration. Algebraic expression rate bounds are established for both, deep neural and spectral operator surrogates acting in scales of separable Hilbert spaces containing domain and range of the map to be expressed, with finite Sobolev or Besov regularity. We illustrate the abstract concepts by expression rate bounds for the coefficient-to-solution map for a linear elliptic PDE on the torus.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10171-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Approximation rates are analyzed for deep surrogates of maps between infinite-dimensional function spaces, arising, e.g., as data-to-solution maps of linear and nonlinear partial differential equations. Specifically, we study approximation rates for deep neural operator and generalized polynomial chaos (gpc) Operator surrogates for nonlinear, holomorphic maps between infinite-dimensional, separable Hilbert spaces. Operator in- and outputs from function spaces are assumed to be parametrized by stable, affine representation systems. Admissible representation systems comprise orthonormal bases, Riesz bases, or suitable tight frames of the spaces under consideration. Algebraic expression rate bounds are established for both, deep neural and spectral operator surrogates acting in scales of separable Hilbert spaces containing domain and range of the map to be expressed, with finite Sobolev or Besov regularity. We illustrate the abstract concepts by expression rate bounds for the coefficient-to-solution map for a linear elliptic PDE on the torus.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.